Applied Physics A

, 124:333 | Cite as

A compact model for selectors based on metal doped electrolyte

  • Lu Zhang
  • Wenhao Song
  • J. Joshua Yang
  • Hai Li
  • Yiran Chen
Article

Abstract

A selector device that demonstrates high nonlinearity and low switching voltages was fabricated using HfOx as a solid electrolyte doped with Ag electrodes. The electronic conductance of the volatile conductive filaments responsible for the switching was studied under both static and dynamic conditions. A compact model is developed from this study that describes the physical processes of the formation and rupture of the Ag filament(s). A dynamic capacitance model is used to fit the transient current traces under different voltage bias, which enables the extraction of parameters associated with the various parasitic components in the device.

Notes

Acknowledgements

We would like to acknowledge (in alphabetical order) Dr. Gary Gibson, Dr. Zhiyong Li, Katy Samuels, Dr. R. Stanley Williams, Dr. M-X. Zhang in Hewlett Packard Enterprise Labs, AFRL FA8750-15-2-0048 and NSF XPS-1,337,198 for support of this research work.

Supplementary material

339_2018_1706_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (DOCX 4593 KB)

References

  1. 1.
    L.O. Chua, Memristor-the missing circuit element. Circuit Theory IEEE Trans. 18(5), 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    D.B. Strukov et al., The missing memristor found. Nature 453(7191), 80–83 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    G.A. Gibson et al., An accurate locally active memristor model for S-type negative differential resistance in NbOx. Appl. Phys. Lett. 108(2), 023505 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    G.W. Burr et al., Access devices for 3D crosspoint memory a. J. Vac. Sci. B Technol. Nanotechnol. Microelectron. 32(4),040802 (2014)CrossRefGoogle Scholar
  5. 5.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nature Nanotechnol. 8(1), 13–24 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    B.J. Choi et al., Trilayer tunnel selectors for memristor memory cells. Adv. Mater. 28(2), 356–362 (2016)CrossRefGoogle Scholar
  7. 7.
    W.G. Kim et al., NbO 2-based low power and cost effective 1S1R switching for high density cross point ReRAM Application. In: 2014 symposium on VLSI technology (VLSI-Technology): digest of technical papers. 2014Google Scholar
  8. 8.
    Kim, S., et al. Ultrathin (< 10 nm) Nb 2 O 5/NbO 2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications. in VLSI technology (VLSIT), 2012 symposium on. 2012. IEEEGoogle Scholar
  9. 9.
    G. Burr et al., Large-scale (512kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (MIEC) at 100% yield. in VLSI technology (VLSIT), 2012 symposium on. 2012. IEEEGoogle Scholar
  10. 10.
    S.H. Jo et al., 3D-stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector. Electron devices meeting (IEDM), 2014 IEEE international. 2014. IEEEGoogle Scholar
  11. 11.
    L. Zhang et al., Ultrathin metal/amorphous-silicon/metal diode for bipolar RRAM selector applications. Electron Dev. Lett. IEEE 35(2), 199–201 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    V. Srinivasan et al., Punchthrough-diode-based bipolar RRAM selector by Si epitaxy. Electron Dev. Lett. IEEE 33(10), 1396–1398 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M. Wang et al., A selector device based on graphene–oxide heterostructures for memristor crossbar applications. Appl. Phys. A 120(2), 403–407 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    W. Lee et al., Varistor-type bidirectional switch (J MAX> 10 7 A/cm 2, selectivity∼ 10 4) for 3D bipolar resistive memory arrays. In VLSI Technology (VLSIT), 2012 symposium on. 2012. IEEEGoogle Scholar
  15. 15.
    M. Son et al., Excellent selector characteristics of nanoscale for high-density bipolar ReRAM applications. Electron Dev. Lett. IEEE 32(11), 1579–1581 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J.J. Yang et al., Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100(11), 113501 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Wang et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nature Mater. 16(1), 101–108 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    R. Midya et al., Anatomy of Ag/Hafnia-Based Selectors with 1010 Nonlinearity. Adv. Mater., 29,1604457 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J.H. Yoon, N.K. Upadhyay, J. Zhang, M. Hu, J.P. Strachan, M. Barnell, Q. Wu, H. Wu, R.S. Williams, Q. Xia, J.J. Yang, Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018)CrossRefGoogle Scholar
  20. 20.
    J.H. Yoon, Z. Wang, K.M. Kim, H. Wu, V. Ravichandran, Q. Xia, C.S. Hwang, J.J. Yang, An artificial nociceptor based on a diffusive memristor. Nat. Commun. 9(1), 417 (2018).  https://doi.org/10.1038/s41467-017-02572-3 ADSCrossRefGoogle Scholar
  21. 21.
    H. Jiang, D. Belkin, S.E. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi, R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J.J. Yang, Q. Xia, A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 8(1), 882 (2017).  https://doi.org/10.1038/s41467-017-00869-x ADSCrossRefGoogle Scholar
  22. 22.
    Z. Wang, M. Rao, R. Midya, S. Joshi, H. Jiang, P. Lin, W. Song, S. Asapu, Y. Zhuo, C. Li, H. Wu, Q. Xia, J.J. Yang, Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv. Funct. Mater. 28(6), 1704862 (2018)CrossRefGoogle Scholar
  23. 23.
    C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C.E. Graves, Z. Li, J.P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R.S. Williams, J.J. Yang, Q. Xia, Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1(1), 52–59 (2018)CrossRefGoogle Scholar
  24. 24.
    J.H. Yoon, J. Zhang, X. Ren, Z. Wang, H. Wu, Z. Li, M. Barnell, Q. Wu, L.J. Lauhon, Q. Xia, J.J. Yang, Truly electroforming-free and low-energy memristors with preconditioned conductive tunneling paths. Adv. Funct. Mater. 27(35), 1702010 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Cuenot et al., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69(16), 165410 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Strachan et al., State dynamics and modeling of tantalum oxide memristors. Electron Dev. IEEE Trans. 60(7), 2194–2202 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    L. Zhang et al., Low voltage two-state-variable memristor model of vacancy-drift resistive switches. Appl. Phys. A 119(1), 1–9 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Zhang et al., A compact modeling of TiO2-TiO2–x memristor. Appl. Phys. Lett. 102(15), 153503 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M.D. Pickett et al., Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 074508 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility ofáthin-film memristors. Appl. Phys. A 94(3), 515–519 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nature materials 6(11), 833–840 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    R. Waser et al., Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25-26), 2632–2663 (2009)CrossRefGoogle Scholar
  33. 33.
    J.J. Yang et al., Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnol 3(7), 429–433 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Kund et al., Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm. IEEE international electron devices meeting, 2005. IEDM technical digest. 2005Google Scholar
  35. 35.
    J.D. McBrayer, R. Swanson, T. Sigmon, Diffusion of metals in silicon dioxide. J. Electrochem. Soc. 133(6), 1242–1246 (1986)CrossRefGoogle Scholar
  36. 36.
    D.B. Strukov, F. Alibart, R.S. Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107(3), 509–518 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations