Applied Physics A

, 124:299 | Cite as

The influence of the PCF scattering on the electrical properties of the AlGaN/AlN/GaN HEMTs after the Si3N4 surface passivation

  • Chen Fu
  • Zhaojun Lin
  • Peng Cui
  • Yuanjie Lv
  • Yang Zhou
  • Gang Dai
  • Chongbiao Luan
  • Huan Liu
  • Aijie Cheng
Article
  • 51 Downloads

Abstract

In this paper, the detailed device characteristics were investigated both before and after the Si3N4 passivation grown by plasma-enhanced chemical vapor deposition (PECVD). Better transport properties have been observed for the passivated devices compared with the same ones before passivation. The strain variation and the influence of the scattering mechanisms were analyzed and studied. The calculated results show that the non-uniform distribution of the additional polarization charges at the AlGaN/AlN/GaN interfaces has been weakened by the deposition of the Si3N4 layer. The numerical rise of the two-dimensional electron gas (2DEG) electron mobility and the decrease of the measured RonA values were in a good consistency, and the weakening of the polarization Coulomb field (PCF) scattering after the passivation process is considered to be the main cause of these phenomena.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 11174182, 11574182, 61674130, 61504127, 11471194 and 11571115), the Developing Foundation of CAEP (Grant no. 2014A05011) and Science Challenge Project (Grant no. TZ2017003).

References

  1. 1.
    U.K. Mishra, L. Shen, T.E. Kazior, Y.F. Wu, Proc. IEEE 96, 287 (2008)CrossRefGoogle Scholar
  2. 2.
    N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, S. Yoshida, Proc. IEEE 98, 1151 (2010)CrossRefGoogle Scholar
  3. 3.
    M.A. Mastro, D. Tsvetkov, V. Soukhoveev, A. Uskiov, V. Dmitriev, B. Luo, F. Ren, K.H. Basi, S.J. Pearton, Solid State Electron. 47, 1075 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J. Xu, PhD Dissertation, University of California at Santa Barbara (2000)Google Scholar
  5. 5.
    C. Mizue, Y. Hori, M. Miczek, T. Hashizume, J. Appl. Phys. 50, 021001 (2011)CrossRefGoogle Scholar
  6. 6.
    R. Vetury, N.Q. Zhang, S. Keller, U.K. Mishra, IEEE Trans. Electron Devices 48, 560 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    B.M. Green, K.K. Chu, E.M. Chumbes, J.A. Smart, J.R. Shealy, L.F. Eastman, IEEE Electron Device Lett. 21, 268 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    J. Derluyn, S. Boeykens, K. Cheng, R. Vandersmissen, J. Das, W. Ruythooren, S. Degroote, M.R. Leys, M. Germain, G. Borghs, J. Appl. Phys. 98, 054501 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Hu, J. Appl. Phys. 70, R53 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    C. Fu, Z.J. Lin, Y. Liu, P. Cui, Y.J. Lv, Y. Zhou, G. Dai, C.B. Luan, Superlattices Microstruct. 111, 806 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura, IEEE Trans. Electron Devices 50, 2528 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    N. Onojimma, M. Higashiwaki, J. Suda, T. Kimoto, T. Mimura, T. Matsui, J. Appl. Phys. 101, 043703 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    F. Zhou, H.P. Lin, L. Zhang, J. Li, X.W. Zhang, D.B. Yu, X.Y. Jiang, Z.L. Zhang, Curr. Appl. Phys. 12, 228 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Ohno, T. Nakao, S. Kishimoto, K. Maezawa, T. Mizutani, Appl. Phys. Lett. 84, 2184 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    J.Z. Zhao, Z.J. Lin, D.C. Timothy, Z. Wang, Z.D. You, Z.G. Wang, Appl. Phys. Lett. 91, 173507 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    K. Hirakawa, H. Sakaki, Phys. Rev. B 33, 8291 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    K. Lee, M.S. Shur, T.J. Drummond, H. Morkoc, J. Appl. Phys. 54, 6432 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    L. Hsu, W. Walukiewicz, Phys. Rev. B 56, 1520 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    D.N. Quang, V.N. Tuoc, T.D. Huan, Phys. Rev. B 68, 195316 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    M.N. Gurusinghe, S.K. Davidsson, T.G. Andersson, Phys. Rev. B 72, 045316 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    Y.J. Lv, Z.J. Lin, Y. Zhang, L.G. Meng, C.B. Luan, Z.F. Cao, H. Chen, Z.G. Wang, Appl. Phys. Lett. 98, 123512 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    C.B. Luan, Z.J. Lin, Y.J. Lv, J.T. Zhao, Y.T. Wang, H. Chen, Z.G. Wang, J. Appl. Phys. 116, 044507 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    A.F.M. Anwar, R.T. Webster, K.V. Smith, Appl. Phys. Lett. 88, 203510 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M.Stutzmann,W. Rieger, J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    P. Cui, H. Liu, W. Lin, Z.J. Lin, A.J. Cheng, M. Yang, Y. Liu, C. Fu, Y.J. Lv, C.B. Luan, IEEE Trans. Electron Devices. 64, 1038 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    M. Yang, Z.J. Lin, J.T. Zhao, P. Cui, C. Fu, Y.J. Lv, Z.H. Feng, IEEE Trans. Electron Devices 63, 1471 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chen Fu
    • 1
  • Zhaojun Lin
    • 1
  • Peng Cui
    • 1
  • Yuanjie Lv
    • 2
  • Yang Zhou
    • 3
  • Gang Dai
    • 3
  • Chongbiao Luan
    • 4
  • Huan Liu
    • 5
  • Aijie Cheng
    • 5
  1. 1.School of MicroelectronicsShandong UniversityJinanChina
  2. 2.National Key Laboratory of Application Specific Integrated Circuit (ASIC)Hebei Semiconductor Research InstituteShijiazhuangChina
  3. 3.Microsystem and Terahertz Research CenterChina Academy of Engineering PhysicsChengduChina
  4. 4.Key Laboratory of Pulsed Power, Institute of Fluid PhysicsCAEPMianyangChina
  5. 5.School of MathematicsShandong UniversityJinanChina

Personalised recommendations