Applied Physics A

, 124:320 | Cite as

Rapid biosynthesis and characterization of silver nanoparticles: an assessment of antibacterial and antimycotic activity

  • Sajjan Kumar Kanawaria
  • Aryan Sankhla
  • Pradeep Kumar Jatav
  • Raghvendra Singh Yadav
  • Kumar Sambhav Verma
  • Parthiban Velraj
  • Sumita Kachhwaha
  • Shanker Lal Kothari
Article
  • 46 Downloads

Abstract

Bioassisted synthesis provides a facile, convenient, and promising approach to produce many inorganic nanostructures. Herein, we report a rapid biosynthesis of silver nanoparticles (AgNPs) using Thuja occidentalis (L.) leaf extract with an emphasis on their antibacterial and antimycotic activity. Interestingly, the synthesis of AgNPs was completed in a short duration of 35–40 min. The electron micrographs showed AgNPs with particles < 30 nm in size. A diffusive absorption band around 430 nm confirmed the polydispersive nature of biosynthesized AgNPs. An additional absorption peak at 256 nm suggested the presence of biomolecules in the reaction mixture in addition to AgNPs. The different bands corresponding to ring compounds, amines, and carbonyl groups in the FT-IR spectra of biosynthesized AgNPs confirmed the presence of terpenes and terpenoids on AgNP surface post-reduction. The encapsulation and stabilization of AgNPs by organic layer was visible from the TEM images. Thus, these organic compounds present in the extract were responsible for first the reduction of precursor salts into AgNPs and second to drape around the particles preventing agglomeration. The AgNPs were effective against strains of Escherichia coli, Pseudomonas putida, and Bacillus subtilis. An AgNP solution with 30 µg/ml concentration arrested the growth of bacterial strains making a zone of inhibition > 15 mm. The antimycotic activity against Aspergillus niger, Fusarium spp., and Alternaria alternata species increased monotonically with nanoparticle concentration in the growth media. A 10 ppm solution of AgNP was detrimental to fungal growth. Thus, the technique provides an avenue to synthesize antibiotic AgNPs without use of other external agents.

Graphical abstract

Notes

Acknowledgements

P. Velraj thanks IAS for summer research fellowship. The facilities provided by UGC-UPE Program, DST-PURSE, and UGC-DRS-II Botany, University of Rajasthan, Jaipur, India are also acknowledged.

References

  1. 1.
    N. Severin, S. Kirstein, I.M. Sokolov, J.P. Rabe, Nano Lett. 9, 457 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    A. Tricoli, S.E. Pratsinis, Nat. Nanotechnol. 5, 54 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    R. Jin, Y.C. Cao, E. Hao, G.S. Métraux, G.C. Schatz, C.A. Mirkin, Nature 425, 487 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    D. Jain, H. Daima, Dig. J. 4, 557 (2009)Google Scholar
  5. 5.
    L.S. Devi, S.R. Joshi, Mycobiology 40, 27 (2012)CrossRefGoogle Scholar
  6. 6.
    Y.K. Mohanta, S.K. Panda, R. Jayabalan, N. Sharma, A.K. Bastia, T.K. Mohanta, Front. Mol. Biosci. 4, 14 (2017)CrossRefGoogle Scholar
  7. 7.
    G. Chladek, A. Mertas, I. Barszczewska-Rybarek, T. Nalewajek, J. Zmudzki, W. Król, J. Lukaszczyk, Int. J. Mol. Sci. 12, 4735 (2011)CrossRefGoogle Scholar
  8. 8.
    F. De Gaetano, L. Ambrosio, M.G. Raucci, A. Marotta, M. Catauro, J. Mater. Sci. Mater. Med. 16, 261 (2005)CrossRefGoogle Scholar
  9. 9.
    M.A. Dar, A. Ingle, M. Rai, Nanomedicine 9, 105 (2013)CrossRefGoogle Scholar
  10. 10.
    Y.K. Mohanta, S. Panda, A. Syed, F. Ameen, A. Bastia, T. Mohanta, IET Nanobiotechnol. 11, 1027 (2017)CrossRefGoogle Scholar
  11. 11.
    B. Godin, J.H. Sakamoto, R.E. Serda, A. Grattoni, A. Bouamrani, M. Ferrari, Trends Pharmacol. Sci. 31, 199 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Tian, K.K.Y. Wong, C.-M. Ho, C.-N. Lok, W.-Y. Yu, C.-M. Che, J.-F. Chiu, P.K.H. Tam, ChemMedChem 2, 129 (2007)CrossRefGoogle Scholar
  13. 13.
    Y.K. Mohanta, K. Biswas, S.K. Panda, J. Bandyopadhyay, D. De, R. Jayabalan, A.K. Bastia, T.K. Mohanta, IET Nanobiotechnol. 11, 1027 (2017)CrossRefGoogle Scholar
  14. 14.
    L. Juan, Z. Zhimin, M. Anchun, L. Lei, Z. Jingchao, Int. J. Nanomed. 5, 261 (2010)CrossRefGoogle Scholar
  15. 15.
    H. Meng, M. Liong, T. Xia, Z. Li, Z. Ji, J.I. Zink, A.E. Nel, ACS Nano 4, 4539 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, C. Wischke, H. Thielecke, A. Lendlein, K. Kratz, R. Lemor, Nanomedicine 7, 228 (2011)CrossRefGoogle Scholar
  17. 17.
    T.M. Tolaymat, A.M. El Badawy, A. Genaidy, K.G. Scheckel, T.P. Luxton, M. Suidan, Sci. Total Environ. 408, 999 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M.H. El-Rafie, T.I. Shaheen, A.A. Mohamed, A. Hebeish, Carbohydr. Polym. 90, 915 (2012)CrossRefGoogle Scholar
  19. 19.
    F. Martínez-Gutierrez, E.P. Thi, J.M. Silverman, C.C. de Oliveira, S.L. Svensson, A. Vanden Hoek, E.M. Sánchez, N.E. Reiner, E.C. Gaynor, E.L.G. Pryzdial, E.M. Conway, E. Orrantia, F. Ruiz, Y. Av-Gay, H. Bach, Nanomedicine 8, 328 (2012)CrossRefGoogle Scholar
  20. 20.
    A.F. Mohammed, Z. Ao, M. Girilal, L. Chen, X. Xiao, P. Kalaichelvan, X. Yao, Int. J. Nanomed. 7, 5007 (2012)Google Scholar
  21. 21.
    K. Kang, D.-H. Lim, I.-H. Choi, T. Kang, K. Lee, E.-Y. Moon, Y. Yang, M.-S. Lee, J.-S. Lim, Toxicol. Lett. 205, 227 (2011)CrossRefGoogle Scholar
  22. 22.
    V.M. Ragaseema, S. Unnikrishnan, V. Kalliyana, L.K. Krishnan, Krishnan, Biomaterials 33, 3083 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, Y. Xia, Chem. Mater. 14, 4736 (2002)CrossRefGoogle Scholar
  24. 24.
    J. Zhu, S. Liu, O. Palchik, Y. Koltypin, A. Gedanken, Langmuir 16, 6396 (2000)CrossRefGoogle Scholar
  25. 25.
    B. Yin, H. Ma, S. Wang, S. Chen, J. Phys. Chem. B 107, 8898 (2003)CrossRefGoogle Scholar
  26. 26.
    Y. Kashiwagi, M. Yamamoto, M. Nakamoto, J. Colloid Interface Sci. 300, 169 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    L. Zhang, Y. Shen, A. Xie, S. Li, B. Jin, Q. Zhang, J. Phys. Chem. B 110, 6615 (2006)CrossRefGoogle Scholar
  28. 28.
    N.M. Dimitrijevic, D.M. Bartels, C.D. Jonah, K. Takahashi, T. Rajh, J. Phys. Chem. B 105, 954 (2001)CrossRefGoogle Scholar
  29. 29.
    A. Henglein, Langmuir 17, 2329 (2001)CrossRefGoogle Scholar
  30. 30.
    A. Callegari, D. Tonti, M. Chergui, Nano Lett. 3, 1565 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    A. Taleb, C. Petit, M.P. Pileni, Chem. Mater. 9, 950 (1997)CrossRefGoogle Scholar
  32. 32.
    P. Patel, P. Agarwal, S. Kanawaria et al., Nanotechnology and plant sciences (Springer, 2015)Google Scholar
  33. 33.
    Y.K. Mohanta, S.K. Panda, A.K. Bastia, T.K. Mohanta, Front. Microbiol. 8, 626 (2017)CrossRefGoogle Scholar
  34. 34.
    N. Jayaprakash, J.J. Vijaya, K. Kaviyarasu, K. Kombaiah, L.J. Kennedy, R.J. Ramalingam, M.A. Munusamy, H.A. Al-Lohedan, J. Photochem. Photobiol. B Biol. 169, 178 (2017)CrossRefGoogle Scholar
  35. 35.
    Y. Mohanta, S. Singdevsachan, U. Parida, S. Panda, T. Mohanta, H. Bae, IET Nanobiotechnol. 10, 184 (2016)CrossRefGoogle Scholar
  36. 36.
    A. Sankhla, R. Sharma, R.S. Yadav, D. Kashyap, S.L. Kothari, S. Kachhwaha, Mater. Chem. Phys. 170, 44 (2016)CrossRefGoogle Scholar
  37. 37.
    P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, M. Sastry, ChemBioChem 3, 461 (2002)CrossRefGoogle Scholar
  38. 38.
    S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, Q. Zhang, Green Chem. 9, 852 (2007)CrossRefGoogle Scholar
  39. 39.
    N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R. Mehta, A. Fatma, Colloids Surfaces B Biointerfaces 81, 81 (2010)CrossRefGoogle Scholar
  40. 40.
    S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, S.R.K. Pandian, J. Muniyandi, N. Hariharan, S.H. Eom, Colloids Surfaces B Biointerfaces 74, 328 (2009)CrossRefGoogle Scholar
  41. 41.
    I. Barwal, P. Ranjan, S. Kateriya, S. Yadav, J. Nanobiotechnol. 9, 56 (2011)CrossRefGoogle Scholar
  42. 42.
    S.P. Dubey, M. Lahtinen, M. Sillanpää, Process Biochem. 45, 1065 (2010)CrossRefGoogle Scholar
  43. 43.
    N. Jayaprakash, J. Judith Vijaya, L. John Kennedy, K. Priadharsini, P. Palani, Mater. Sci. Eng. C 49, 316 (2015)CrossRefGoogle Scholar
  44. 44.
    S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, J. Adv. Res. 7, 17 (2016)CrossRefGoogle Scholar
  45. 45.
    J. Duke, K.K. Wain, Encycl. Am. Grolier 3 (1981)Google Scholar
  46. 46.
    J.L. Hartwell, Lloydia 34, 103 (1971)Google Scholar
  47. 47.
    E. Guenther, D. Althausen, The Essential Oils, vol. 2 (D. Van Nostrand, New York, 1952)Google Scholar
  48. 48.
    B.J. Wiley, S.H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, Y. Xia, J. Phys. Chem. B 110, 15666 (2006)CrossRefGoogle Scholar
  49. 49.
    S.L. Smitha, K.M. Nissamudeen, D. Philip, K.G. Gopchandran, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 71, 186 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    R. Jenkins, R.L. Snyder, Introduction to X-Ray Powder Diffractometry. (Wiley, Hoboken, 1996)CrossRefGoogle Scholar
  51. 51.
    D.L. Pavia, G.M. Lampman, G.S. Kriz, J.A. Vyvyan, Introduction to Spectroscopy (Cengage Learning, 2008)Google Scholar
  52. 52.
    K.B. Narayanan, N. Sakthivel, Mater. Charact. 61, 1232 (2010)CrossRefGoogle Scholar
  53. 53.
    G. Mie, Ann. Phys. 30, 377 (1908)CrossRefGoogle Scholar
  54. 54.
    D.B. Wetlaufer, Advances in Protein Chemistry, vol. 17 (Elsevier, Amsterdam, 1963)Google Scholar
  55. 55.
    C.J. Berg, A.M. LaFountain, R.O. Prum, H.A. Frank, M.J. Tauber, Arch. Biochem. Biophys. 539, 142 (2013)CrossRefGoogle Scholar
  56. 56.
    K. Brijesh, R. Ruchi, D. Sanjita, D. Saumya, RJPBCS 3, 975 (2012)Google Scholar
  57. 57.
    J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, Nanotechnology 16, 2346 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    S. Das, J. Das, A. Samadder, S.S. Bhattacharyya, D. Das, A.R. Khuda-Bukhsh, Colloids Surfaces B Biointerfaces 101, 325 (2013)CrossRefGoogle Scholar
  59. 59.
    Y. He, J. Du, Tang, Zheng, Zhang, Zhao, Lv, Qianfa, Int. J. Nanomed. 8, 1809 (2013)CrossRefGoogle Scholar
  60. 60.
    C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Photochem. Photobiol. B Biol. 163, 77 (2016)CrossRefGoogle Scholar
  61. 61.
    Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, J. Biomed. Mater. Res. 52, 662 (2000)CrossRefGoogle Scholar
  62. 62.
    I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci. 275, 177 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    H. Jin, J.M. McCaffery, E. Grote, J. Cell Biol. 180, 813 (2008)CrossRefGoogle Scholar
  64. 64.
    L.M. Douglas, J.B. Konopka, Annu. Rev. Microbiol. 68, 377 (2014)CrossRefGoogle Scholar
  65. 65.
    Y.-K. Nasrollahi, B.H. Kim, G. Jung, Plant Dis. 93, 1037 (2009)CrossRefGoogle Scholar
  66. 66.
    J. Min, K. Kim, S. Kim, J. Jung, Plant Pathol. 25, 376 (2009)CrossRefGoogle Scholar
  67. 67.
    Y.-K. Jo, B.H. Kim, G. Jung, Plant Dis. 93, 1037 (2009)CrossRefGoogle Scholar
  68. 68.
    S. Kim, K. Kim, K. Lamsal, Y. Kim, S. Kim, J. Microbiol. 19, 760 (2009)Google Scholar
  69. 69.
    K.J. Kim, W.S. Sung, S.K. Moon, J.S. Choi, J.G. Kim, D.G. Lee, J. Microbiol. Biotechnol. 18, 1482 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sajjan Kumar Kanawaria
    • 1
  • Aryan Sankhla
    • 4
  • Pradeep Kumar Jatav
    • 1
  • Raghvendra Singh Yadav
    • 5
  • Kumar Sambhav Verma
    • 1
  • Parthiban Velraj
    • 1
    • 3
  • Sumita Kachhwaha
    • 1
  • Shanker Lal Kothari
    • 1
    • 2
  1. 1.Department of BotanyUniversity of RajasthanJaipurIndia
  2. 2.Institute of BiotechnologyAmity University RajasthanJaipurIndia
  3. 3.Department of BiotechnologyAlagappa UniversityKaraikudiIndia
  4. 4.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  5. 5.Centre for NanosciencesIndian Institute of TechnologyKanpurIndia

Personalised recommendations