Applied Physics A

, 124:60 | Cite as

Time-resolved microscopy of fs-laser-induced heat flows in glasses

  • Jörn Bonse
  • Thomas Seuthe
  • Moritz Grehn
  • Markus Eberstein
  • Arkadi Rosenfeld
  • Alexandre Mermillod-BlondinEmail author


Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient dn/dT. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser–matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials.



The authors would like to acknowledge the financial support of the German Research Foundation DFG (Grants Nos. EB 248/4-2; EI 110/30-2; RO 2074/8-2; ME 4427/1-1).

Supplementary material

Supplementary material 1 (AVI 863 kb)

Supplementary material 2 (AVI 813 kb)


  1. 1.
    Y. Bellouard, A. Said, M. Dugan, P. Bado, Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining—Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 1st ed., ed. by R. Osellame, G. Cerullo, R. Ramponi, vol. 123 (Springer, Berlin, Heidelberg, 2012)Google Scholar
  4. 4.
    K. Sugioka, Y. Cheng, Ultrafast lasers - reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014)CrossRefGoogle Scholar
  5. 5.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21, 1729 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    W. Watanabe, S. Onda, T. Tamaki, K. Itoh, J. Nishii, Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Appl. Phys. Lett. 89, 021106 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    A.R. Collins, G.M. O’Connor, Mechanically inspired laser scribing of thin flexible glass. Opt. Lett. 40, 4811 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    N. Brouwer, B. Rethfeld, Excitation and relaxation dynamics in dielectrics irradiated by an intense ultrashort laser pulse, J. Opt. Soc. Am. B 31, C28 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Gross, M. Withford, Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, K. Hirao, Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses. Appl. Phys. Lett. 93, 231112 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    N. Bloembergen, Laser-induced electric breakdown in solids. IEEE J. Quantum Electron. 10, 375 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett. 80, 4076 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J. McGaughey, J.A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    J.M. Larkin, A.J.H. McGaughey, Thermal conductivity accumulation in amorphous silica and amorphous silicon, Phys. Rev. B 89, 144303 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J.F. Power, Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory, Appl. Opt. 29, 52 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, K. Hirao, Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse. Opt. Express 15, 16800 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    V.V. Kononenko, E.V. Zavedeev, M.I. Latushko, V.I. Konov, Observation of fs laser-induced heat dissipation in diamond bulk. Laser Phys. Lett. 10, 036003 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    G. Ghosh, Model for the thermo-optic coefficients of some standard optical glasses. J. Non-Cryst. Solids 189, 191 (1995)Google Scholar
  20. 20.
    A. Mermillod-Blondin, H. Mentzel, A. Rosenfeld, Time-resolved microscopy with random lasers. Opt. Lett. 38, 4112 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M.K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.P. Colombier, R. Stoian, Ultrafast laser nanostructuring in bulk silica, a slow microexplosion. Optica 4, 951 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, I.V. Hertel, Time-resolved imaging of laser-induced refractive index changes in transparent media. Rev. Sci. Instrum. 82, 033703 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    D.S. Wiersma, The physics and applications of random lasers, Nat. Phys. 4, 359 (2008)CrossRefGoogle Scholar
  24. 24.
    B. Redding, M.A. Choma, H. Cao, Speckle-free laser imaging using random laser illumination. Nat. Photon. 6, 355 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    A. Mermillod-Blondin, I.M. Burakov, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, R. Stoian, Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates, Phys. Rev. B 77, 104205 (2008)Google Scholar
  26. 26.
    T. Yoshino, Y. Ozeki, M. Matsumoto, K. Itoh, In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass. Jpn. J. Appl. Phys. 51, 102403 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    M. Grehn, T. Seuthe, M. Höfner, N. Griga, C. Theiss, A. Mermillod-Blondin, M. Eberstein, H. Eichler, J. Bonse, Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy, Opt. Mater. Express 4, 689 (2014)CrossRefGoogle Scholar
  28. 28.
    V.R. Bhardwaj, P.B. Corkum, D.M. Rayner, C. Hnatovsky, E. Simova, R.S. Taylor, Stress in femtosecond-laser-written waveguides in fused silica. Opt. Lett. 29, 1312 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys. Rev. B 71, 125435 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    T.H. Nguyen, M. Kandel, H.M. Shakir, C. Best-Popescu, J. Arikkath, M.N. Do, G. Popescu, Halo-free phase contrast microscopy. Sci. Reports 7, 44034 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    E. Gamaly, The physics of ultra-short laser interaction with solids at non-relativistic intensities, Phys. Rep. 508, 91 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses, J. Appl. Phys. 108, 073533 (2010)Google Scholar
  33. 33.
    H. Carlsaw, J. Jaeger, Conduction of heat in solids (Oxford Science Publications, Oxford, 1959)Google Scholar
  34. 34.
    I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod- Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses, J. Appl. Phys. 101, 043506 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, J.-L. Rullier, Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations. Appl. Phys. Lett. 101, 211908 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    F. Gan, New system of calculation of properties of inorganic oxide glasses, Sci. Sin. 17, 533 (1974) (in Russian)Google Scholar
  37. 37.
    R. Kamikawachi, I. Abe, A. Paterno, H. Kalinowski, M. Muller, J. Pinto, J. Fabris, Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer. Optics Commun. 281, 621 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Y.H. Kim, S.J. Park, S.-W. Jeon, S. Ju, C.-S. Park, W.-T. Han, B.H. Lee, Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe. Opt. Express 20, 23744 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und -prüfung (BAM)BerlinGermany
  2. 2.Fraunhofer-Institut für Keramische Technologien und Systeme (IKTS)DresdenGermany
  3. 3.Technische Universität BerlinInstitut für Optik und Atomare PhysikBerlinGermany
  4. 4.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany

Personalised recommendations