A study about the influence of single-scale and dual-scale structures on surface wettability

  • 351 Accesses

  • 2 Citations


Surface morphology is known as the key factor to obtain lyophobic surface. This paper illustrates two superhydrophobic surfaces with different surface morphologies including single-scale nanorod structure and dual-scale flower-like structure. We compared contact angles of many liquids and dynamic behavior of water droplet impinging on the nanorod structured surface to those of on the flower-like structured surface. It was found that both the single-scale nanorod structure and the dual-scale flower-like structure can achieve superhydrophobicity. However, the dual-scale flower-like structure is superior to the single-scale nanorod structure in terms of repelling the droplet with low surface tension. In addition, we investigated stability and corrosion resistance of these two superhydrophobic surfaces, showing that both the single-scale nanorod and the dual-scale flower-like structured superhydrophobic surfaces had excellent long-term stability and thermal stability. Nevertheless, the dual-scale flower-like structured superhydrophobic surface was more stable under outside vibration and had better corrosion resistance than the single-scale nanorod structured superhydrophobic surface.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    R.X. Yuan, S.Q. Wu, P. Yu, B.H. Wang, L.W. Mu, X.G. Zhang, Y.X. Zhu, B. Wang, H.Y. Wang, J.H. Zhu, Superamphiphobic and electroactive nanocomposite toward self-cleaning, antiwear, and anticorrosion coatings. ACS Appl. Mater. Interfaces. 8, 12481–12493 (2016)

  2. 2.

    L.B. Feng, M. Yang, X.T. Shi, Y.H. Liu, Y.P. Wang, X.H. Qiang, Copper-based superhydrophobic materials with long-term durability, stability, regenerability, and self-cleaning property. Colloids Surf. A 508, 39–47 (2016)

  3. 3.

    L.J. Liu, W.K. Liu, R.F. Chen, X. Li, X.J. Xie, Hierarchical growth of Cu zigzag microstrips on Cu foil for superhydrophobicity and corrosion resistance. Chem. Eng. 281, 804–812 (2015)

  4. 4.

    Y. Liu, J.D. Liu, S.Y. Li, J.A. Liu, Z.W. Han, L.Q. Ren, Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy. ACS Appl. Mater. Interfaces. 5, 8907–8914 (2013)

  5. 5.

    M.K. Jung, T. Kim, H. Kim, R. Shin, J. Lee, J. Lee, J. Lee, S. Kang, Design and fabrication of a large-area superhydrophobic metal surface with anti-icing properties engineered using a top–down approach. Appl. Surf. Sci. 351, 920–936 (2015)

  6. 6.

    P. Che, W. Liu, X.X. Chang, A.H. Wang, Y.S. Han, Multifunctional silver film with superhydrophobic and antibacterial properties. Nano Res. 9, 442–450 (2016)

  7. 7.

    W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)

  8. 8.

    D.K. Sarkar, M. Farzaneh, Fabrication of superhydrophobic surfaces on engineering materials by a solution-immersion process. Adhes. Sci. Technol. 23, 1215 (2009)

  9. 9.

    B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater Sci. 1, 1–108 (2011)

  10. 10.

    S.Y. Li, Y. Li, J. Wang, Y.G. Nan, B.H. Ma, Z.L. Liu, J.X. Gu, Fabrication of pinecone-like structure superhydrophobic surface on titanium substrate and its self-cleaning property. Chem. Eng. 290, 82–90 (2016)

  11. 11.

    M. Han, S. Go, Y. Ahn, Fabrication of superhydrophobic surface on magnesium substrate by chemical etching. B. Korean Chem. Soc. 33, 1363–1366 (2012)

  12. 12.

    K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Super oil-repellent surfaces. Angew. Chem. Int. Ed. Eng. 9, 1011–1012 (1997)

  13. 13.

    Y.S. Joung, C.R. Buie, Electrophoretic deposition of unstable colloidal suspensions for superhydrophobic surfaces. Langmuir 27, 4156–4163 (2011)

  14. 14.

    Y. Shi, W. Yang, X.J. Feng, Y.S. Wang, G.R. Yue, Fabrication of superhydrophobic ZnO nanorods surface with corrosion resistance via combining thermal oxidation and surface modification. Mater. Lett. 151, 24–27 (2015)

  15. 15.

    J.M. Lee, K.K. Jung, J.S. Ko, Effect of NaCl in a nickel electrodeposition on the formation of nickel nanostructure. J. Mater. Sci. 51, 3036–3044 (2016)

  16. 16.

    G. Azimi, R. Dhiman, H.M. Kwon, A.T. Paxson, K.K. Varanasi, Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315–320 (2013)

  17. 17.

    N.A. Patankar, Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20, 8209–8213 (2004)

  18. 18.

    T.J. Li, M. Paliy, X.L. Wang, B. Kobe, W.M. Lau, J. Yang, Facile one-step photolithographic method for engineering hierarchically nano/microstructured transparent superamphiphobic surfaces. ACS Appl. Mater. Interfaces. 7, 10988–10992 (2015)

  19. 19.

    H. Vahabi, W. Wang, S. Movafaghi, A.K. Kota, Free-standing, flexible, superomniphobic films. ACS Appl. Mater. Interfaces. 8, 21962–21967 (2016)

  20. 20.

    S.J. Pan, A.K. Kota, J.M. Mabry, A. Tuteja, Superomniphobic surfaces for effective chemical shielding. J. Am. Chem. Soc. 135, 578–581 (2013)

  21. 21.

    H. Kim, K. Noh, C. Choi, J. Khamwannah, D. Villwock, S. Jin, Extreme superomniphobicity of multiwalled 8 nm TiO2 nanotubes. Langmuir 27, 10191–10196 (2011)

  22. 22.

    Y. Liu, H.J. Cao, S.G. Chen, D.A. Wang, Ag nanoparticle-loaded hierarchical superamphiphobic surface on an al substrate with enhanced anticorrosion and antibacterial properties. J. Phys. Chem. C 119, 25449–25456 (2015)

  23. 23.

    H. Jin, M. Kettunen, A. Laiho, H. Pynnonen, J. Paltakari, A. Marmur, O. Ikkala, R.H.A. Ras, Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27, 1930–1934 (2011)

  24. 24.

    L.W. Chen, Z.G. Guo, W.M. Liu, biomimetic multi-functional superamphiphobic FOTS-TiO2 particles beyond lotus leaf. ACS Appl. Mater. Interfaces. 8, 27188–27198 (2016)

  25. 25.

    W.J. Jiang, C.M. Grozea, Z.Q. Shi, G.J. Liu, Fluorinated raspberry-like polymer particles for superamphiphobic coatings. ACS Appl. Mater. Interfaces. 6, 2629–2638 (2014)

  26. 26.

    S.Y. Lee, Y. Rahmawan, S. Yang, Transparent and superamphiphobic surfaces from mushroom-like micropillar arrays. ACS Appl. Mater. Interfaces. 7, 24197–24203 (2015)

  27. 27.

    H.J. Li, X.B. Wang, Y.L. Song, Y.Q. Liu, Q.S. Li, L. Jiang, D.B. Zhu, Super-amphiphobic aligned carbon nanotube films. Angew. Chem. Int. Ed. 40, 1743–1745 (2001)

  28. 28.

    A. Tutejaa, W. Choib, J.M. Mabryc, G.H. McKinleyb, R.E. Cohena, Robust omniphobic surfaces. PNAS 105, 18200–18205 (2008)

  29. 29.

    H. Li, S.R. Yu, X.X. Han, Preparation of a biomimetic superhydrophobic ZnO coating on an X90 pipeline steel surface. New J. Chem. 39, 4860–4868 (2015)

  30. 30.

    H. Li, S.R. Yu, Facile fabrication of micro–nano-rod structures for inducing a superamphiphobic property on steel surface. Appl. Phys. A 122, 30 (2016)

  31. 31.

    H. Li, S.R. Yu, X.X. Han, Fabrication of CuO hierarchical flower-like structures with biomimetic superamphiphobic, self-cleaning and corrosion resistance properties. Chem. Eng. 283, 1443–1454 (2016)

  32. 32.

    B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430–4431 (2003)

  33. 33.

    A. Gomes, T. Frade, Isabel D. Nogueira, Morphological characterization of Zn-based nanostructured thin films. Curr. Microsc. Contrib. Adv. Sci. Technol. 2, 1146–1153 (2012)

  34. 34.

    D.Q. Gao, G.J. Yang, J.Y. Li, J. Zhang, J.L. Zhang, D.S. Xue, Room-temperature ferromagnetism of flowerlike CuO nanostructures. J. Phys. Chem. C 114, 18347–18351 (2010)

  35. 35.

    G. Vazquez, E. Alvarez, J.M. Navaza, Surface tension of alcohol water + water from 20 to 50 °C. J. Chem. Eng. Data 40, 611–614 (1995)

  36. 36.

    W.S.Y. Wong, G.Y. Liu, N. Nasiri, C.L. Hao, Z.K. Wang, Antonio tricoli, omnidirectional self-assembly of transparent superoleophobic nanotextures. ACS Nano 11, 587–596 (2017)

  37. 37.

    A.R. Bielinski, M. Boban, Y. He, E. Kazyak, D.H. Lee, C.M. Wang, A. Tuteja, N.P. Dasgupta, Rational design of hyperbranched nanowire systems for tunable superomniphobic surfaces enabled by atomic layer deposition. ACS Nano 11, 478–489 (2017)

  38. 38.

    Y.Z. Shen, J. Tao, H.J. Tao, S.L. Chen, L. Pan, T. Wang, Relationship between wetting hysteresis and contact time of a bouncing droplet on hydrophobic surfaces. ACS Appl. Mater. Interfaces. 7, 20972–20978 (2015)

  39. 39.

    P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse, Drop impact upon micro- and nanostructured superhydrophobic surfaces. Langmuir 25, 12293–12298 (2009)

  40. 40.

    H. Kim, C. Lee, M.H. Kim, J. Kim, Drop impact characteristics and structure effects of hydrophobic surfaces with micro- and/or nanoscaled structures. Langmuir 28, 11250–11257 (2012)

  41. 41.

    K. Seo, M. Kim, S. Seok, D.H. Kim, Transparent superhydrophobic surface by silicone oil combustion. Colloids Surf. A 492, 110–118 (2016)

  42. 42.

    Z. Chen, X.J. Liu, Y. Wang, J. Li, Z.S. Guan, Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage. Appl. Surf. Sci. 359, 826–833 (2015)

  43. 43.

    S. Movafaghi, V. Leszczak, W. Wang, J.A. Sorkin, L.P. Dasi, K.C. Popat, A.K. Kota, Hemocompatibility of superhemophobic titania surfaces. Adv. Healthc. Mater. 6, 1600717 (2017)

  44. 44.

    G. Whyman, E. Bormashenko, How to make the Cassie wetting state stable? Langmuir 27, 8171–8176 (2011)

  45. 45.

    H.F. Zhang, L. Yin, S.Y. Shi, X.W. Liu, Y. Wang, F. Wang, Facile and fast fabrication method for mechanically robust superhydrophobic surface on aluminum foil. Microelectron. Eng. 141, 238–242 (2015)

Download references


The authors thank the financial support from the National Natural Science Foundation of China (51075184), the Fundamental Research Funds for the Central Universities (15CX06059A), the Postgraduate Innovative Project of China University of Petroleum (East China) (YCXJ2016036), and the project of Shengli Oil Production Plant (Shengli Oilfield Company, SINOPEC) (30200001-16-ZC0607-0035). The research group of Prof. Zuankai Wang in City University of Hong Kong helped us to obtain the dynamic videos of impinging water droplet on these two superhydrophobic surfaces.

Author information

Correspondence to Sirong Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 14 (WMV 5397 kb)

Supplementary material 15 (WMV 1565 kb)

Supplementary material 1 (JPEG 536 kb)

Supplementary material 2 (JPEG 590 kb)

Supplementary material 3 (JPEG 111 kb)

Supplementary material 4 (JPEG 238 kb)

Supplementary material 5 (JPEG 228 kb)

Supplementary material 6 (JPEG 265 kb)

Supplementary material 7 (JPEG 290 kb)

Supplementary material 8 (JPEG 44 kb)

Supplementary material 9 (JPEG 48 kb)

Supplementary material 10 (JPEG 261 kb)

Supplementary material 11 (JPEG 254 kb)

Supplementary material 12 (JPEG 265 kb)

Supplementary material 13 (JPEG 283 kb)

Supplementary material 14 (WMV 5397 kb)

Supplementary material 15 (WMV 1565 kb)

Supplementary material 16 (AVI 92562 kb)

Supplementary material 17 (AVI 144648 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yu, S., Xie, W. et al. A study about the influence of single-scale and dual-scale structures on surface wettability. Appl. Phys. A 123, 374 (2017).

Download citation


  • Contact Angle
  • Water Droplet
  • Impact Velocity
  • Water Contact Angle
  • Superhydrophobic Surface