Applied Physics A

, 123:124 | Cite as

An experimental study of double-peeling mechanism inspired by biological adhesive systems

  • Lars HeepeEmail author
  • Saverio Raguseo
  • Stanislav N. Gorb
Invited Paper


Double- (or multiple-) peeling systems consist of two (or numerous) tapes adhering to a substrate and having a common hinge, where the pulling force is applied. Biological systems, consisting of tape-like (or spatula-like) contact elements, are widely observed in adhesive pads of flies, beetles, spiders, and geckos. It was previously hypothesized and analytically modeled that the simultaneous use of two or more such tape-like contacts in the opposite movement of contralateral legs during ceiling locomotion leads to enhanced, robust, and stable overall attachment, if compared to independently working contact points. In this paper, this biological solution for smart adhesion is demonstrated in an experiment using elastic adhesive tapes. The obtained results not only aided in explaining the functional mechanism of biological adhesive systems, but also in providing an experimental proof for biological observations and previous theoretical models.


Critical Angle Stance Phase Gait Pattern Adhesive System Optimum Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Extensive work of V. Kastner on the preliminary experiments is greatly acknowledged. We would like to thank E. Appel for assistance with Fig. 2a. We would like to thank A. Kovalev for helpful comments on the manuscript. This work was partially supported by CARTRIB Project of The Leverhulme Trust (S. N. Gorb) and projects CP 1550 and 1623 by a grant of the Cluster of Excellence 80 The Future Ocean (L. Heepe and S. N. Gorb). The Future Ocean is funded within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments. S. Raguseo greatly acknowledges support of the Erasmus\(+\) programme of the European Union.

Supplementary material

339_2016_753_MOESM1_ESM.pdf (9 kb)
Supplementary material 1 (PDF 8 KB)

Supplementary material 1 (MP4 8575 KB)


  1. 1.
    S. Gorb, Attachment devices of insect cuticle (Kluwer Academic Publishers, London, 2001)Google Scholar
  2. 2.
    S.N. Gorb, R.G. Beutel, Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 88, 530–534 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    S.N. Gorb, Uncovering insect stickiness: structure and properties of hairy attachment devices. Am. Entomol. 51, 31–35 (2005)CrossRefGoogle Scholar
  4. 4.
    J. O. Wolff, S. N. Gorb, Attachment structures and adhesive secretions in arachnids, Springer (2016)Google Scholar
  5. 5.
    A. Haase, Untersuchungen uber den Bau und die Entwicklung der Haftlappen bei den Geckotiden. Arch. Naturgesch. 66, 321–346 (1900)Google Scholar
  6. 6.
    R. Ruibal, V. Ernst, The structure of the digital setae of lizards. J. Morphol. 117, 271–293 (1965)CrossRefGoogle Scholar
  7. 7.
    U. Hiller, Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z. Morphol. Tiere 62, 307–362 (1968)CrossRefGoogle Scholar
  8. 8.
    D.J. Irschick, C.C. Austin, K. Petren, R.N. Fisher, J.B. Losos, O. Ellers, A comparative analysis of clinging ability among padbearing lizards. Biol. J. Linn. Soc. 59, 21–35 (1996)CrossRefGoogle Scholar
  9. 9.
    K. Autumn, P.H. Niewiarowski, J.B. Puthoff, Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Annu. Rev. Ecol. Evol. Syst. 45, 445–470 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Varenberg, N.M. Pugno, S.N. Gorb, Spatulate structures in biological fibrillar adhesion. Soft Matter 6, 3269–3272 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    K. Kendall, Thin-film peeling - the elastic term. J. Phys. D: Appl. Phys 8, 1449–1452 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    E. Arzt, S. Gorb, R. Spolenak, From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100, 10603–10606 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    N. Pugno, S. Gorb, Functional mechanism of biological adhesive systems described by multiple peeling approach, In: Proceedings of the 12th international conference on fracture, July 1217, Ottawa, Canada, USA (2009)Google Scholar
  14. 14.
    N. Pugno, The theory of multiple peeling. Int. J. Fract. 171, 185–193 (2011)CrossRefGoogle Scholar
  15. 15.
    A.N. Gent, S. Kaang, Pulloff forces for adhesive tapes. J. Appl. Polym. Sci. 32, 4689–4700 (1986)CrossRefGoogle Scholar
  16. 16.
    J.G. Williams, Energy release rates for the peeling of flexible membranes and the analysis of blister tests. Int. J. Fract. 87, 265–288 (1997)CrossRefGoogle Scholar
  17. 17.
    K.T. Wan, Fracture mechanics of a V-peel adhesion test transition from a bending plate to a stretching membrane. J. Adhes. 70, 197–207 (1999)CrossRefGoogle Scholar
  18. 18.
    A. Molinari, G. Ravichandran, Peeling of elastic tapes: effects of large deformations, pre-straining, and of a peel-zone model. J. Adhes. 84, 961–995 (2008)CrossRefGoogle Scholar
  19. 19.
    M.R. Begley, R.R. Collino, J.N. Israelachvili, R.M. McMeeking, Peeling of a tape with large deformations and frictional sliding. J. Mech. Phys. Solids 61, 1265–1279 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Z. Sun, K.T. Wan, D.A. Dillard, A theoretical and numerical study of thin film delamination using the pull-off test. Int. J. Solids Struct. 41, 717–730 (2004)CrossRefzbMATHGoogle Scholar
  21. 21.
    B. Chen, P. Wu, H. Gao, Pre-tension generates strongly reversible adhesion of a spatula pad on substrate. J. R. Soc. Interface 6, 529–537 (2009)CrossRefGoogle Scholar
  22. 22.
    D. Labonte, W. Federle, Biomechanics of shear-sensitive adhesion in climbing animals: peeling, pre-tension and sliding-induced changes in interface strength. J. R. Soc. Interface 13, 20160373 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Kendall, Interfacial dislocations spontaneously created by peeling. J. Phys. D: Appl. Phys. 11, 1519–1527 (1978)ADSCrossRefGoogle Scholar
  24. 24.
    B. Chen, P.D. Wu, H. Gao, Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion. Proc. R. Soc. A 464, 1639–1652 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    F. Bosia, S. Colella, V. Mattoli, B. Mazzolai, N.M. Pugno, Hierarchical multiple peeling simulations. RSC Adv. 4, 25447–25452 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Pantano, N.M. Pugno, S.N. Gorb, Numerical simulations demonstrate that the double tapering of the spatualae of lizards and insects maximize both detachment resistance and stability. Int. J. Fract. 171, 169–175 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Xia, L. Ponson, Toughening and asymmetry in peeling of heterogeneous adhesives. Phys. Rev. Lett. 108, 196101 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Z. Gu, S. Li, F. Zhang, S. Wang, Understanding surface adhesion in nature: a peeling model. Adv. Sci 3, 1500327 (2016)CrossRefGoogle Scholar
  29. 29.
    L. Afferrante, G. Carbone, G. Demelio, N. Pugno, Adhesion of elastic thin films: double peeling of tapes versus axisymmetric peeling of membranes. Tribol. Lett. 52, 439–447 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Putignano, L. Afferrante, L. Mangialardi, G. Carbone, Equilibrium states and stability of pre-tensioned adhesive tapes. Beilstein J. Nanotechnol. 5, 1725–1731 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Heepe, S.N. Gorb, Biologically inspired mushroom-shaped adhesive microstructures. Annu. Rev. Mater. Res. 44, 173–203 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 4, 271–275 (2007)CrossRefGoogle Scholar
  33. 33.
    K. Dening, L. Heepe, L. Afferrante, G. Carbone, S.N. Gorb, Adhesion control by inflation: implications from biology to artificial attachment device. Appl. Phys. A 116, 567–573 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    X. Jin, J. Strueben, L. Heepe, A. Kovalev, Y.K. Mishra, R. Adelung, S.N. Gorb, A. Staubitz, Joining the unjoinable: adhesion between low surface energy polymers using tetrapodal ZnO linkers. Adv. Mater. 24, 5676–5680 (2012)CrossRefGoogle Scholar
  35. 35.
    L. Heepe, A.E. Kovalev, A.E. Filippov, S.N. Gorb, Adhesion failure at 180,000 frames per second: direct observation of the detachment process of a mushroom-shaped adhesive. Phys. Rev. Lett. 111, 104301 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    L. Heepe, G. Carbone, E. Pierro, A.E. Kovalev, S.N. Gorb, Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure. Appl. Phys. Lett. 104, 011906 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    S. N. Gorb, Biological fibrillar adhesives: Functional principles and biomimetic applications. In: da Silva, L.F.M., chsner, A., Adams, R.D. (eds.), Handbook of Adhesion Technology, Springer, 1410-1436 (2011)Google Scholar
  38. 38.
    Q.H. Cheng, B. Chen, H.J. Gao, Y.W. Zhang, Sliding-induced non-uniform pretension governs robust and reversible adhesion: a revisit of adhesion mechanisms of geckos. J. R. Soc. Interface 9, 283–291 (2012)CrossRefGoogle Scholar
  39. 39.
    A. Filippov, V.L. Popov, S.N. Gorb, Shear induced adhesion: Contact mechanics of biological spatula-like attachment devices. J. Theor. Biol. 276, 126–131 (2011)MathSciNetCrossRefGoogle Scholar
  40. 40.
    K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair. Nature 405, 681685 (2002)Google Scholar
  41. 41.
    H. Gao, X. Wang, H. Yao, S.N. Gorb, E. Arzt, Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37, 275285 (2005)CrossRefGoogle Scholar
  42. 42.
    G. Huber, S.N. Gorb, R. Spolenak, E. Arzt, Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol. Lett. 1, 24 (2005)CrossRefGoogle Scholar
  43. 43.
    K. Autumn, A. Dittmore, D. Santos, M. Spenko, M. Cutkosky, Frictional adhesion: a new angle on gecko attachment. J. Exp. Biol. 209, 3569–3579 (2006)CrossRefGoogle Scholar
  44. 44.
    Y. Tian, N. Pesika, H. Zeng, K. Rosenberg, B. Zhao, P. McGuiggan, K. Autumn, J. Isralachvili, Adhesion and friction in gecko toe attachment and detachment 103, 19230–19325 (2006)Google Scholar
  45. 45.
    S. Niederegger, S. Gorb, Y. Jiao, Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J. Comp. Physiol. A 187, 961970 (2002)CrossRefGoogle Scholar
  46. 46.
    S. Niederegger, S.N. Gorb, Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J. Comp. Physiol. A 192, 1223–1232 (2006)CrossRefGoogle Scholar
  47. 47.
    E. Wohlfart, J.O. Wolff, E. Arzt, S.N. Gorb, The whole is more than the sum of all its parts: collective effect of spider attachment organs. J. Exp. Biol. 217, 222–224 (2014)CrossRefGoogle Scholar
  48. 48.
    V.B. Wigglesworth, How does a fly cling to the under surface of a glass sheet? J. Exp. Biol. 129, 373–376 (1987)Google Scholar
  49. 49.
    A.P. Russell, A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia, Gekkonidae). J. Zool. Lond. 176, 437476 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Lars Heepe
    • 1
    • 2
    Email author
  • Saverio Raguseo
    • 1
  • Stanislav N. Gorb
    • 1
  1. 1.Department of Functional Morphology and Biomechanics, Zoological InstituteKiel UniversityKielGermany
  2. 2.Mads Clausen InstituteUniversity of Southern DenmarkSønderborgDenmark

Personalised recommendations