Applied Physics A

, 123:31 | Cite as

Viability assessment of bacteria using long-range surface plasmon waveguide biosensors

  • Paul Béland
  • Pierre BeriniEmail author
Part of the following topical collections:
  1. Advanced Metamaterials and Nanophotonics


We demonstrate that long-range surface plasmon waveguide biosensors are useful to monitor the quiver of immobilized live bacteria in buffer and in human urine. First, the biosensor captures bacteria selectively, based on gram, using antibodies against gram adsorbed on the surface of the waveguide through Protein G coupling. Then, analysis of the noise present on the optical output signal reveals quiver of bacteria immobilized on the waveguide. Live bacteria produce a noisy signature compared to baseline levels. The standard deviation over time of the optical power output from the biosensor increased by factors of 3–60 over that of the baseline level for Staphylococcus epidermidis and Escherichia coli immobilized selectively on waveguides.


Human Urine Live Bacterium Output Optical Power Bacterium Immobilization Local Refractive Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the Ontario Centres of Excellence (OCE) for funding this work under project number 21107. We are grateful to Canadian Blood Services (Sandra Ramirez, for donating two bacteria strains: Escherichia coli (E. coli) XL1 Blue and Staphylococcus epidermidis (S. epi) ATCC 12228. We are grateful to Oleksiy Krupin for assistance with the application of the surface chemistries.

Supplementary material

Supplementary material 1 (MP4 9863 kb)


  1. 1.
    G. Schmiemann, E. Kniehl, K. Gebhardt, M. Matejczyk, E. Hummers-Pradier, The diagnosis of urinary tract infection: a systematic review. Dtsch. Arztebl. Int. 107, 361–367 (2010)Google Scholar
  2. 2.
    J.A. Simerville, W.C. Maxted, J.J. Pahira, Urinalysis: a comprehensive review. Am. Fam. Phys. 71, 1153–1162 (2005)Google Scholar
  3. 3.
    M.A. Broeren, S. Bahceci, H.L. Vader, N.L. Arents, Screening for urinary tract infection with the Sysmex UF-1000i urine flow cytometer. J. Clin. Microbiol. 49, 1025–1029 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Marschal, M. Wienke, S. Hoering, I.B. Autenrieth, J.-S. Frick, Evaluation of 3 different rapid automated systems for diagnosis of urinary tract infection. Diagn. Microbiol. Infect. Dis. 72, 125–130 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Wang, Y. Zhang, D. Xu, W. Shao, Y. Lu, Evaluation of the Sysmex UF-1000i for the diagnosis of urinary tract infection. Am. J. Clin. Pathol. 133, 577–582 (2010)CrossRefGoogle Scholar
  6. 6.
    M.A. Van Dilla, R.G. Langlois, D. Pinkel et al., Bacterial characterization by flow cytometry. Science 220, 620–622 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    O. Krupin, H. Asiri, C. Wang, R.N. Tait, P. Berini, Biosensing using straight long-range surface plasmon waveguides. Opt. Express 21, 698–709 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    O. Krupin, C. Wang, P. Berini, Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides. Biosens. Bioelectr. 53, 117–122 (2014)CrossRefGoogle Scholar
  9. 9.
    W.R. Wong, O. Krupin, S.D. Sekaran, F.R.M. Adikan, P. Berini, Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides. Anal. Chem. 86, 1735–1743 (2014)CrossRefGoogle Scholar
  10. 10.
    W.R. Wong, S.D. Sekaran, F.R.M. Adikan, P. Berini, Detection of dengue NS1 antigen using long-range surface plasmon waveguides. Biosens. Bioelectr. 78, 132–139 (2016)CrossRefGoogle Scholar
  11. 11.
    O. Krupin, C. Wang, P. Berini, Detection of leukemia markers using long-range surface plasmon waveguides functionalized with protein G. Lab Chip 15, 4156–4165 (2015)CrossRefGoogle Scholar
  12. 12.
    P. Béland, O. Krupin, P. Berini, Selective detection of bacteria in urine with a long-range surface plasmon waveguide biosensor. Biomed. Opt. Expr. 6, 2908–2922 (2015)CrossRefGoogle Scholar
  13. 13.
    B. Liedberg, C. Nylander, I. Lundstrom, Surface plasmon resonance for gas detection and biosensing. Sens. Act. 4, 299–304 (1983)CrossRefGoogle Scholar
  14. 14.
    P.M. Fratamico, T.R. Strobaugh, M.B. Medina, A.G. Gehring, Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor. Biotechnol. Technol. 12, 571–576 (1998)CrossRefGoogle Scholar
  15. 15.
    Ö. Torun, İ.H. Boyac, E. Temür, U. Tamer, Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria. Biosens. Bioelectr. 37, 53–60 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Vala, S. Etheridge, J. Roach, J. Homola, Long-range surface plasmons for sensitive detection of bacterial analytes. Sens. Act. B 139, 59–63 (2009)CrossRefGoogle Scholar
  17. 17.
    V. Chabot, Y. Miron, M. Grandbois, P.G. Charette, Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth. Sens. Act. B 174, 94–101 (2012)CrossRefGoogle Scholar
  18. 18., Bureau d’éthique et d’intégrité à la recherche, 75 Ave. Laurier Est, Université d`Ottawa, K1 N 6N5, numéro de dossier H06–14–01, 23 juin 2014 (personal communication, 2014)Google Scholar
  19. 19.
    C. Chiu, E. Lisicka-Skrzek, R.N. Tait, P. Berini, Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels. J. Vac. Sci. Technol. B 28, 729–735 (2010)CrossRefGoogle Scholar
  20. 20.
    Z. Suo, R. Avci, X. Yang, D.W. Pascual, Efficient immobilization and patterning of live bacterial cells. Langmuir 24, 4161–4167 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada
  2. 2.Department of PhysicsUniversity of OttawaOttawaCanada
  3. 3.Centre for Research in PhotonicsUniversity of OttawaOttawaCanada

Personalised recommendations