Skip to main content
Log in

A selector device based on graphene–oxide heterostructures for memristor crossbar applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Most of the potential applications of memristive devices adopt crossbar architecture for ultra-high density. One of the biggest challenges of the crossbar architecture is severe residue leakage current (sneak path) issue. A possible solution is introducing a selector device with strong nonlinear current–voltage (IV) characteristics in series with each memristor in crossbar arrays. Here, we demonstrate a novel selector device based on graphene–oxide heterostructures, which successfully converts a typical linear TaO x memristor into a nonlinear device. The origin of the nonlinearity in the heterostructures is studied in detail, which highlights an important role of the graphene–oxide interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L. Chua, Appl. Phys. A 102, 765–783 (2011)

    Article  ADS  Google Scholar 

  2. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 13–24 (2013)

    Article  ADS  Google Scholar 

  3. J.J. Yang, M.X. Zhang, M.D. Pickett, F. Miao, J.P. Strachan, W. Li, W. Yi, D.A.A. Ohlberg, B.J. Choi, W. Wu, J.H. Nickel, G. Medeiros-Ribeiro, R.S. Williams, Appl. Phys. Lett. 100, 113501 (2012)

    Article  ADS  Google Scholar 

  4. M. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y. Kim, C. Kim, D.H. Seo, S. Seo, U. Chung, I. Yoo, K. Kim, Nat. Mater. 10, 625–630 (2011)

    Article  ADS  Google Scholar 

  5. M. Lee, S.I. Kim, C.B. Lee, H. Yin, S. Ahn, B.S. Kang, K.H. Kim, J.C. Park, C.J. Kim, I. Song, S.W. Kim, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, Y. Park, Adv. Funct. Mater. 19, 1587–1593 (2009)

    Article  Google Scholar 

  6. K.M. Kim, S.J. Song, G.H. Kim, J.Y. Seok, M.H. Lee, J.H. Yoon, J. Park, C.S. Hwang, Adv. Funct. Mater. 21, 1587–1592 (2011)

    Article  Google Scholar 

  7. H.S.P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F.T. Chen, M. Tsai, Proc. IEEE 100, 1951–1970 (2012)

    Article  Google Scholar 

  8. H. Akinaga, H. Shima, Proc. IEEE 98, 2237–2251 (2010)

    Article  Google Scholar 

  9. Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W.D. Lu, Nat. Commun. 5, 4232 (2014)

    ADS  Google Scholar 

  10. I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, R. Waser, Nat. Mater. 11, 530–535 (2012)

    Article  ADS  Google Scholar 

  11. F. Miao, J.J. Yang, J. Borghetti, G. Medeiros-Ribeiro, R.S. Williams, Nanotechnology 22, 254007 (2011)

    Article  ADS  Google Scholar 

  12. E. Linn, R. Rosezin, C. Kuegeler, R. Waser, Nat. Mater. 9, 403–406 (2010)

    Article  ADS  Google Scholar 

  13. S.H. Chang, S.B. Lee, D.Y. Jeon, S.J. Park, G.T. Kim, S.M. Yang, S.C. Chae, H.K. Yoo, B.S. Kang, M. Lee, T.W. Noh, Adv. Mater. 23, 4063 (2011)

    Article  Google Scholar 

  14. F. Miao, W. Yi, I. Goldfarb, J.J. Yang, M. Zhang, M.D. Pickett, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, ACS Nano 6, 2312–2318 (2012)

    Article  Google Scholar 

  15. A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Nanotechnology 22, 485203 (2011)

    Article  Google Scholar 

  16. F. Miao, J.P. Strachan, J.J. Yang, M. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 23, 5633 (2011)

    Article  Google Scholar 

  17. J.P. Strachan, A.C. Torrezan, G. Medeiros-Ribeiro, R.S. Williams, Nanotechnology 22, 505402 (2011)

    Article  ADS  Google Scholar 

  18. G.W. Burr, R.S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi, H. Hwang, J. Vac. Sci. Technol. B 32, 40802 (2014)

    Article  Google Scholar 

  19. J.Y. Seok, S.J. Song, J.H. Yoon, K.J. Yoon, T.H. Park, D.E. Kwon, H. Lim, G.H. Kim, D.S. Jeong, C.S. Hwang, Adv. Funct. Mater. 24, 5316–5339 (2014)

    Article  Google Scholar 

  20. R. Mandapati, A. Borkar, V.S.S. Srinivasan, P. Bafna, P. Karkare, S. Lodha, B. Rajendran, U. Ganguly, IEEE Trans. Nanotechnol. 12, 1178–1184 (2013)

    Article  ADS  Google Scholar 

  21. W.Y. Park, G.H. Kim, J.Y. Seok, K.M. Kim, S.J. Song, M.H. Lee, C.S. Hwang, Nanotechnology 21, 195201 (2010)

    Article  ADS  Google Scholar 

  22. J.H. Lee, G.H. Kim, Y.B. Ahn, J.W. Park, S.W. Ryu, C.S. Hwang, H.J. Kim, Appl. Phys. Lett. 100, 123505 (2012)

    Article  ADS  Google Scholar 

  23. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  24. N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Adv. Mater. 24, 5782–5825 (2012)

    Article  Google Scholar 

  25. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351–355 (2008)

    Article  ADS  Google Scholar 

  26. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  27. W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nat. Nanotechnol. 4, 562–566 (2009)

    Article  ADS  Google Scholar 

  28. Y. Yang, J. Lee, S. Lee, C. Liu, Z. Zhong, W. Lu, Adv. Mater. 26, 3693–3699 (2014)

    Article  Google Scholar 

  29. M. Qian, Y. Pan, F. Liu, M. Wang, H. Shen, D. He, B. Wang, Y. Shi, F. Miao, X. Wang, Adv. Mater. 26, 3275 (2014)

    Article  Google Scholar 

  30. W. Bao, G. Liu, Z. Zhao, H. Zhang, D. Yan, A. Deshpande, B.J. LeRoy, C.N. Lau, Nano Res. 3, 98 (2010)

    Article  Google Scholar 

  31. J.J. Yang, J. Borghetti, D. Murphy, D.R. Stewart, R.S. Williams, Adv. Mater. 21, 3754–3758 (2009)

    Article  Google Scholar 

  32. J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Appl. Phys. Lett. 97, 232102 (2010)

    Article  ADS  Google Scholar 

  33. E.L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford University Press, Oxford, 2012)

    Google Scholar 

  34. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335, 947–950 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Lian, X., Pan, Y. et al. A selector device based on graphene–oxide heterostructures for memristor crossbar applications. Appl. Phys. A 120, 403–407 (2015). https://doi.org/10.1007/s00339-015-9208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9208-y

Keywords

Navigation