Applied Physics A

, Volume 103, Issue 2, pp 271–277 | Cite as

Time-resolved imaging of hydrogel printing via laser-induced forward transfer

  • Claudia UngerEmail author
  • Martin Gruene
  • Lothar Koch
  • Juergen Koch
  • Boris N. Chichkov


In this work, the printing mechanism of an alginate-based hydrogel via laser-induced forward transfer (LIFT) is investigated by spatial and temporal high-resolved stroboscopic imaging. First, the generation of the liquid jet is studied at two different laser fluences in a process without collector slide. Furthermore, the impingement process onto the collector slide at the same fluence levels is observed. With the help of these images the development of the jet is explained. Besides the influences of the collector slide as well as the applied laser fluence on the transfer are demonstrated.


Vapor Bubble Retention Force Sessile Droplet Forward Transfer Critical Weber Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(AVI 4.47 MB)


  1. 1.
    D.B. Chrisey, The power of direct writing. Science 289, 879–881 (2000) CrossRefGoogle Scholar
  2. 2.
    B.R. Ringeisen, C.M. Othon, J.A. Barron, D. Young, B.J. Spargo, Jet-based methods to print living cells. Biotechnol. J. 1, 930–948 (2006) CrossRefGoogle Scholar
  3. 3.
    L. Koch, S. Kuhn, H. Sorg, M. Gruene, S. Schlie, R. Gaebel, B. Polchow, K. Reimers, S. Stoelting, N. Ma, P.M. Vogt, G. Steinhoff, B. Chichkov, Laser printing of skin cells and human stem cells. Tissue Eng. Part C Methods (2009). doi: 10.1089/ten.tec.2009.0397 Google Scholar
  4. 4.
    A. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana, M. Wilhelmi, A. Haverich, B. Chichkov, Laser printing of cells into 3-d scaffolds. Biofabrication 2, 014104 (2010) CrossRefADSGoogle Scholar
  5. 5.
    Y. Nakata, T. Okada, Time-resolved microscopic imaging of the laser-induced forward transfer process. Appl. Phys. A 69(Suppl.), 275–278 (1999) CrossRefADSGoogle Scholar
  6. 6.
    I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, A. Rode, A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr. Appl. Surf. Sci. 208–209, 177–180 (2003) CrossRefGoogle Scholar
  7. 7.
    R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun, Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer. Appl. Surf. Sci. 255, 5430–5434 (2009) CrossRefADSGoogle Scholar
  8. 8.
    D. Young, R.C.Y. Auyeung, A. Piqué, D.B. Chrisey, D.D. Dlott, Plume and jetting regimes in a laser based forward transfer process as observed by time-resolved optical microscopy. Appl. Surf. Sci. 197–198, 181–187 (2002) CrossRefGoogle Scholar
  9. 9.
    M. Duocastella, J.M. Fernández-Pradas, P. Serra, J.L. Morenza, Jet formation in the laser forward transfer of liquids. Appl. Phys. A 93, 453–456 (2008) CrossRefGoogle Scholar
  10. 10.
    P. Serra, M. Duocastella, J. Fernández-Pradas, J. Morenza, Liquids microprinting through laser-induced forward transfer. Appl. Surf. Sci. 255, 5342–5345 (2009) CrossRefADSGoogle Scholar
  11. 11.
    M. Duocastella, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, Time-resolved imaging of the laser forward transfer of liquids. J. Appl. Phys. 106, 084907 (2009) CrossRefADSGoogle Scholar
  12. 12.
    M. Duocastella, J. Fernández-Pradas, J. Morenza, P. Serra, Sessile droplet formation in the laser-induced forward transfer of liquids: A time-resolved imaging study. Thin Solid Films 518, 5321–5325 (2010) CrossRefADSGoogle Scholar
  13. 13.
    J. Barron, H. Young, D. Dlott, M. Darfler, D. Krizman, B. Ringeisen, Printing of protein microarrays via capillary-free fluid jetting mechanism. Proteomics 5, 4138–4144 (2005) CrossRefGoogle Scholar
  14. 14.
    D. Young, R.C.Y. Auyeung, A. Piqué, D.B. Chrisey, D.D. Dlott, Time-resolved optical microscopy of a laser-based forward transfer process. Appl. Phys. Lett. 78, 3169–3171 (2001) CrossRefADSGoogle Scholar
  15. 15.
    B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Koloszsvari, D. Chrisey, A. Szabo, A. Nogradi, Survival and proliferation ability of various living cell types after laser-induced forward transfer. Tissue Eng. 11, 1817–1823 (2005) CrossRefGoogle Scholar
  16. 16.
    C. Clasen, J. Eggers, M.A. Fontelos, J. Li, G.H. McKinley, The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283–308 (2006) CrossRefzbMATHADSGoogle Scholar
  17. 17.
    L.E. Rodd, T.P. Scott, J.J. Cooper-White, G.H. McKinley, Capillary break-up rheometry of low-viscosity elastic fluids. Appl. Rheol. 15, 12–27 (2005) Google Scholar
  18. 18.
    M. Gruene, A. Deiwick, L. Koch, S. Schlie, C. Unger, N. Hofmann, I. Bernemann, B. Glasmacher, B.N. Chichkov, Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng. Part C Methods (2010). doi: 10.1089/ten.TEC.2010.0359 Google Scholar
  19. 19.
    P.B. Robinson, J.R. Blake, T. Kodama, A. Shima, Y. Tomita, Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89, 8225–8237 (2001) CrossRefADSGoogle Scholar
  20. 20.
    A. Pearson, E. Cox, J.R. Blake, S.R. Otto, Bubble interactions near a free surface. Eng. Anal. Bound. Elem. 28(4), 295–313 (2004) CrossRefzbMATHGoogle Scholar
  21. 21.
    A. Antkowiak, N. Bremond, S.L. Dizes, E. Villermaux, Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241–250 (2007) CrossRefzbMATHADSGoogle Scholar
  22. 22.
    J.-M. Cheny, K. Walters, Rheological influences on the splashing experiment. J. Non-Newtonian Fluid Mech. 86, 185–210 (1999) CrossRefzbMATHGoogle Scholar
  23. 23.
    S. Chandra, C. Avedisian, On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 13–41 (1991) CrossRefADSGoogle Scholar
  24. 24.
    M. Rein, Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 61–93 (1993) CrossRefADSGoogle Scholar
  25. 25.
    T. Mao, D. Kuhn, H. Tran, Spread and rebound of liquid droplets upon impact on flat surfaces. AiChE J. 43, 2169–2179 (1997) CrossRefGoogle Scholar
  26. 26.
    X. Zhang, O. Basaran, Dynamic surface tension effects in impact of a drop with a solid surface. J. Colloid Interface Sci. 187, 166–178 (1997) CrossRefGoogle Scholar
  27. 27.
    I.V. Roisman, R. Rioboo, C. Tropea, Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458, 1411–1430 (2002) CrossRefzbMATHADSGoogle Scholar
  28. 28.
    S. Sikalo, M. Marengo, C. Tropea, E.N. GaniImage, Analysis of impact of droplets on horizontal surfaces. Exp. Therm. Fluid Sci. 25, 503–510 (2002) CrossRefGoogle Scholar
  29. 29.
    D.B. van Dama, C.L. Clerc, Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16, 3404–3414 (2004) Google Scholar
  30. 30.
    A.M. Worthington, On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 261–272 (1877) Google Scholar
  31. 31.
    M. Bussmann, S. Chandra, J. Mostagshimi, Modeling the splash of a droplet impacting a solid surface. Phys. Fluids 12, 3121–3132 (2000) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Claudia Unger
    • 1
    Email author
  • Martin Gruene
    • 1
  • Lothar Koch
    • 1
  • Juergen Koch
    • 1
  • Boris N. Chichkov
    • 1
  1. 1.Laser Zentrum Hannover e.V.HannoverGermany

Personalised recommendations