Self-assembly of a functional electronic circuit directed by capillary interactions


We report on the use of capillary interactions to drive the self-assembly of an electronic circuit based on mesoscale building blocks. The specific target structure is a linear heterotetramer comprising non-identical millimetre-scale cubic blocks that, following assembly, forms a functioning astable multivibrator circuit. Importantly, the self-assembly process is designed to be unconstrained, i.e., each of the blocks are free to move in any way during assembly. To this end, solder droplets are selectively patterned on the block faces. On contact, capillary interactions between shape complimentary solder patterns on the blocks cause the molten solder droplets to coalesce and the blocks to self-assemble. In this way, capillary forces direct the alignment, registration, linking and electrical interconnection of each block during the assembly process. This demonstration of mesoscale self-assembly mediated by capillary interactions illustrates that the application of unconventional assembly paradigms to complex structure fabrication is feasible and that these approaches may yet yield viable strategies for fabrication of highly integrated systems.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    N.B. Bowden, M. Weck, I.S. Choi, G.M. Whitesides, Acc. Chem. Res. 34, 231 (2001)

  2. 2.

    M. Madou, Fundamentals of Microfabrication (CRC Press, New York, 1997)

  3. 3.

    C.J. Morris, S.A. Stauth, P.A. Parviz, IEEE Trans. Adv. Packag. 28, 600 (2005)

  4. 4.

    H.-J.J. Yeh, J.S. Smith, IEEE Photon. Technol. Lett. 6, 706 (1994)

  5. 5.

    C.S. Lee, H. Lee, R.M. Westervelt, Appl. Phys. Lett. 79, 3308 (2001)

  6. 6.

    B.A. Grzybowski, A. Winkleman, J.A. Wiles, Y. Brumer, G.M. Whitesides, Nat. Mater. 2, 241 (2003)

  7. 7.

    A. O’Riordan, P. Delaney, G. Redmond, Nano Lett. 4, 761 (2004)

  8. 8.

    T.D. Clark, J. Tien, D.C. Duffy, K.E. Paul, G.M. Whitesides, J. Am. Chem. Soc. 123, 7677 (2001)

  9. 9.

    U. Srinivasan, D. Liepmann, R.T. Howe, J. Microelectromech. Syst. 10, 17 (2001)

  10. 10.

    J. Fang, K.F. Böhringer, J. Micromech. Microeng. 16, 721 (2006)

  11. 11.

    N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Science 276, 233 (1997)

  12. 12.

    A. Terfort, N. Bowden, G.M. Whitesides, Nature 386, 162 (1997)

  13. 13.

    H.O. Jacobs, A.R. Tao, A. Schwartz, D.H. Gracias, G.M. Whitesides, Science 296, 323 (2002)

  14. 14.

    S.A. Stauth, B.A. Parviz, PNAS 103, 13922 (2006)

  15. 15.

    W. Zheng, P. Buhlmann, H.O. Jacobs, PNAS 101, 12814 (2004)

  16. 16.

    W. Zheng, H.O. Jacobs, Adv. Funct. Mater. 15, 732 (2005)

  17. 17.

    D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides, Science 289, 1170 (2000)

  18. 18.

    A.H. Cannon, Y. Hua, C.L. Henderson, W.P. King, J. Micromech. Microeng. 15, 2172 (2005)

  19. 19.

    M. Boncheva, D.H. Gracias, H.O. Jacobs, G.M. Whitesides, PNAS 99, 4937 (2002)

Download references

Author information

Correspondence to G. Redmond.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reynolds, K., O’Riordan, A. & Redmond, G. Self-assembly of a functional electronic circuit directed by capillary interactions. Appl. Phys. A 98, 203 (2010) doi:10.1007/s00339-009-5374-0

Download citation


  • 81.16.Dn
  • 68.03.Cd
  • 85.40.-e
  • 87.85.Rs
  • 85.45Xx