Coral Reefs

pp 1–18 | Cite as

Evolution, diversity, distribution and the endangered future of the giant clam–Symbiodiniaceae association

  • Miguel MiesEmail author


Giant clams are found in a mutualistic association with Symbiodiniaceae dinoflagellates. While clams are economically important for fisheries, Symbiodiniaceae are responsible for most of the primary production in coral reefs. This review addresses key issues regarding the giant clam–Symbiodiniaceae holobiont: diversity and distribution; functional traits; evolution and coevolution; and consequences of climate change. Findings show that holobiont distribution is partitioned by host species and geography. So far, giant clams have been reported in association with only 30 Symbiodiniaceae phylotypes, all within genera Symbiodinium, Cladocopium and Durusdinium. Species and functional diversities are highest in the Coral Triangle. The association evolved in the Eocene–Oligocene transition; there is evidence for coevolution, including host organs developed for housing symbionts, change in host habitat and multiple symbiont phylotypes found exclusively in giant clams. Clam bleaching events have been recorded throughout the Indo-Pacific. These clams may be particularly vulnerable, as they rarely associate with stress-tolerant symbionts and are heavily targeted by fishing. The Great Barrier Reef is particularly at risk, as clams in that area do not associate with thermally tolerant, low-irradiance-adapted and opportunistic symbiont phylotypes. Further reduction in giant clam populations may serve as an important indicator of the increasing decline of coral reef biodiversity.


Climate change Coral reefs Holobiont Symbiosis Tridacna Zooxanthellae 



I would like to thank the anonymous reviewers, Linda Waters, Maurício Shimabukuro, Arthur Güth and Paulo Sumida for their comments on the manuscript, and Juliana Ali and Arthur Güth for the illustrations.

Author contributions

MM compiled and analyzed the data and wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The author declares that he have no conflict of interest.


  1. Addessi L (2001) Giant clam bleaching in the lagoon of Takapoto atoll (French Polynesia). Coral Reefs 19:220CrossRefGoogle Scholar
  2. Ajith Kumar TT, Balasubramanian T (2012) Bleaching of corals in Agatti-Lakshadweep, India: a window review. In: Proceedings of the 12th international coral reef symposium, Cairns, AustraliaGoogle Scholar
  3. Andréfouët S, Van Wynsberge S, Gaertner-Mazouni N, Menkes C, Gilbert A, Remoissenet G (2013) Climate variability and massive mortalities challenge giant clam conservation and management efforts in French Polynesia atolls. Biol Cons 160:190–199CrossRefGoogle Scholar
  4. Andréfouët S, Van Wynsberge S, Kabbadj L, Wabnitz CC, Menkes C, Tamata T, Pahuatini M, Tetairekie I, Teaka I, Scha TA, Teaka T, Remoissenet G (2018) Adaptive management for the sustainable exploitation of lagoon resources in remote islands: lessons from a massive El Niño-induced giant clam bleaching event in the Tuamotu atolls (French Polynesia). Environ Cons 45:30–40CrossRefGoogle Scholar
  5. Baillie BK, Belda-Baillie CA, Maruyama T (2000) Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. J Phycol 36:1153–1161CrossRefGoogle Scholar
  6. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  7. Bellwood DR, Hoey AS, Hughes TP (2012) Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proc R Soc B 279:1621–1629CrossRefPubMedGoogle Scholar
  8. bin Othman AS, Goh GHS, Todd PA (2010) The distribution and status of giant clams (family Tridacnidae)—a short review. Raff Bull Zool 58:103–111Google Scholar
  9. Bongaerts P, Sampayo EM, Bridge TCL, Ridgway T, Vermeulen F, Englebert N, Webster JM, Hoegh-Guldberg O (2011) Symbiodinium diversity in mesophotic coral communities on the Great Barrier Reef: a first assessment. Mar Ecol Prog Ser 439:117–126CrossRefGoogle Scholar
  10. Braley RD (1992) The Giant Clam: A Hatchery and Nursery Culture Manual. Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  11. Brown JH, Muskanofola MR (1985) An investigation of stocks of giant clams (family Tridacnidae) in Java and of their utilization and potential. Aquacult Fish Manage 1:25–39Google Scholar
  12. Bruno JF, Siddon CE, Witman JD, Colin PL, Toscano MA (2001) El Niño related coral bleaching in Palau, Western Caroline Islands. Coral Reefs 20:127–136CrossRefGoogle Scholar
  13. Buck BH, Rosenthal H, Saint-Paul U (2002) Effect of increased irradiance and thermal stress on the symbiosis of Symbiodinium microadriaticum and Tridacna gigas. Aquat Living Resour 15:107–117CrossRefGoogle Scholar
  14. Cabaitan PC, Gomez ED, Aliño PM (2008) Effects of coral transplantation and giant clam restocking on the structure of fish communities on degraded patch reefs. J Exp Mar Biol Ecol 357:85–98CrossRefGoogle Scholar
  15. Canapa A, Barucca M, Marinelli A, Olmo E (2001) A molecular phylogeny of Heterodonta (Bivalvia) based on small ribosomal subunit RNA sequences. Mol Phylogenet Evol 21:156–161CrossRefPubMedGoogle Scholar
  16. Carlos AA, Baillie BK, Maruyama T (2000) Diversity of dinoflagellates symbionts (zooxanthellae) in a host individual. Mar Ecol Prog Ser 195:93–100CrossRefGoogle Scholar
  17. Chavanich S, Viyakarn V, Adams P, Klammer J, Cook N (2012) Reef communities after the 2010 mass coral bleaching at Racha Yai island in the Andaman Sea and Koh Tao in the Gulf of Thailand. Phuket Marine Biology Centre Research Bulletin 71:103–110Google Scholar
  18. Chen CA, Lam KK, Nakano Y, Tsai WS (2003) A stable association of the stress-tolerant zooxanthellae, Symbiodinium clade D, with the low-temperature-tolerant coral, Oulastrea crispata (Scleractinia: Faviidae) in subtropical non-reefal coral communities. Zool Stud 42:540–550Google Scholar
  19. Chew SF, Koh CZY, Hiong KC, Choo CYL, Wong WP, Neo ML, Ip YK (2019) Light-enhanced expression of Carbonic Anhydrase 4-like supports shell formation in the fluted giant clam Tridacna squamosa. Gene 683:101–112CrossRefPubMedGoogle Scholar
  20. Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261CrossRefPubMedPubMedCentralGoogle Scholar
  21. de Goeij JM, van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110CrossRefPubMedGoogle Scholar
  22. DeBoer TS, Baker AC, Erdmann MV, Ambariyanto Barber PH (2012) Patterns of Symbiodinium distribution in three giant clam species across the biodiverse Bird’s Head region of Indonesia. Mar Ecol Prog Ser 444:117–132CrossRefGoogle Scholar
  23. Elfwing T, Plantman P, Tedengren M, Wijnbladh E (2001) Responses to temperature, heavy metal and sediment stress by the giant clam Tridacna squamosa. Mar Freshwater Behav Physiol 34:239–248CrossRefGoogle Scholar
  24. Estacion JS, Braley RD (1988) Growth and survival of Tridacna gigas juveniles in an intertidal pond. In: Copland JW, Lucas JS (eds) Giant Clams in Asia and the Pacific. ACIAR Monograph Series No. 9, Canberra, pp 191–192Google Scholar
  25. Farmer MA, Fitt WK, Trench RK (2001) Morphology of the symbiosis between Corculum cardissa (Mollusca: Bivalvia) and Symbiodinium corculorum (Dinophyceae). Biol Bull 200:336–343CrossRefPubMedGoogle Scholar
  26. Fauvelot C, Andréfouët S, Grulois D, Tiavouane J, Wabnitz CC, Magalon H, Borsa P (2017) Phylogeography of Noah’s giant clam. Mar Biodivers. CrossRefGoogle Scholar
  27. Fensome RA, Saldarriaga JF, Taylor FJRM (1999) Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies. Grana 38:66–80CrossRefGoogle Scholar
  28. Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263CrossRefPubMedGoogle Scholar
  29. Fitt WK, Fisher CR, Trench RK (1984) Larval biology of tridacnid clams. Aquaculture 39:181–195CrossRefGoogle Scholar
  30. Fitt WK, Trench RK (1981) Spawning, development, and acquisition of zooxanthellae by Tridacna squamosa (Mollusca, Bivalvia). Biol Bull 161:213–235CrossRefGoogle Scholar
  31. Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K, Donner SD, Hoegh-Guldberg O (2013) Limiting global warming to 2°C is unlikely to save most coral reefs. Nat Clim Change 3:165–170CrossRefGoogle Scholar
  32. Gillett R (2016) Fisheries in the Economies of Pacific Island Countries and Territories. Secretariat of the Pacific Community, Noumea, New CaledoniaGoogle Scholar
  33. Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17CrossRefGoogle Scholar
  34. Gomez ED, Mingoa-Licuanan SS (1998) Mortalities of giant clams associated with unusually high temperatures and coral bleaching. Reef Encounter 24:23Google Scholar
  35. Gomez ED, Mingoa-Licuanan SS (2006) Achievements and lessons learned in restocking giant clams in Philippines. Fisheries Research 80:46–52CrossRefGoogle Scholar
  36. Harzhauser M, Mandic O, Piller WE, Reuter M, Kroh A (2008) Tracing back the origin of the Indo-Pacific mollusc fauna: basal Tridacninae from the Oligocene and Miocene of the Sultanate of Oman. Palaeontology 51:199–213CrossRefGoogle Scholar
  37. Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195CrossRefGoogle Scholar
  38. Herrera ND, ter Poorten JJ, Bieler R, Mikkelsen PM, Strong EE, Jablonski D, Steppan SJ (2015) Molecular phylogenetics and historical biogeography amid shifting continents in the cockles and giant clams (Bivalvia: Cardiidae). Mol Phylogenet Evol 93:94–106CrossRefPubMedGoogle Scholar
  39. Heslinga GA, Perron FE, Orak O (1984) Mass culture of giant clams (F. Tridacnidae) in Palau. Aquaculture 39:197–215CrossRefGoogle Scholar
  40. Hirose E, Iwai K, Maruyama T (2006) Establishment of the photosymbiosis in the early ontogeny of three giant clams. Mar Biol 148:551–558CrossRefGoogle Scholar
  41. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of world’s coral reefs. Mar Freshwater Res 50:839–866CrossRefGoogle Scholar
  42. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RD, Greenfield P, Gomez ED, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  43. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83CrossRefPubMedGoogle Scholar
  44. Hui M, Kochzius M, Leese F (2012) Isolation and characterisation of nine microsatellite markers in the boring giant clam (Tridacna crocea) and cross-amplification in five other tridacnid species. Mar Biodivers 42:285–287CrossRefGoogle Scholar
  45. Hume BCC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J (2016) Ancestral genetic diversity associated with the rapid spread of stress-tolerant coralsymbionts in response to Holocene climate change. Proc Natl Acad Sci USA 113:4416–4421CrossRefPubMedGoogle Scholar
  46. Hume BCC, Ziegler M, Poulain J, Pochon X, Romac S, Boissin E, de Vargas C, Planes S, Wincker P, Voolstra CR (2018) An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 6:e4816CrossRefPubMedPubMedCentralGoogle Scholar
  47. Iglesias-Prieto R, Trench RK (1997) Photoadaptation, photoacclimation and niche diversification in invertebrate-dinoflagellate symbioses. In: Proceedings of the 8th international coral reef symposiumGoogle Scholar
  48. Ikeda S, Yamashita H, Kondo S, Inoue K, Morishima S, Koike K (2017) Zooxanthellal genetic varieties in giant clams are partially determined by species-intrinsic and growth-related characteristics. PLoS ONE 12:e0172285CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ishikura M, Adachi K, Maruyama T (1999) Zooxanthellae release glucose in the tissue of a giant clam, Tridacna crocea. Mar Biol 133:665–673CrossRefGoogle Scholar
  50. Ishikura M, Hagiwara K, Takishita K, Haga M, Iwai K, Maruyama T (2004) Isolation of new Symbiodinium strains from tridacnid giant clam (Tridacna crocea) and sea slug (Pteraeolidia ianthina) using culture medium containing giant clam tissue homogenate. Mar Biotechnol 6:378–385CrossRefPubMedGoogle Scholar
  51. Ishikura M, Kato C, Maruyama T (1997) UV-absorbing substances in zooxanthellate and azooxanthellate clams. Mar Biol 128:649–655CrossRefGoogle Scholar
  52. IUCN (2016) The IUCN red list of threatened species. Version 2016-2 [Online].
  53. Jantzen C, Wild C, El-Zibdah M, Roa-Quiaoit HA, Haacke C, Richter C (2008) Photosynthetic performance of giant clams, Tridacna maxima and T. squamosa, Red Sea. Mar Biol 155:211–221CrossRefGoogle Scholar
  54. Junchompoo C, Sinrapasan N, Penpian C, Patsorn P (2013) Changing seawater temperature effects on giant clams belaching, Mannai Island, Rayong Province, Thailand. In: Proceedings of the design symposium on conservation of ecosystemGoogle Scholar
  55. Karako S, Stambler N, Dubinsky Z (2002) The taxonomy and evolution of the zooxanthellae-coral symbiosis. In: Seckbach J (ed) Symbiosis: Mechanisms and Model Systems. Kluwer Academic Publishers, The Netherlands, pp 539–557Google Scholar
  56. Keyse J, Treml EA, Huelsken T, Barber PH, DeBoer TS, Kochzius M, Nuryanto A, Gardner JPA, Liu L-L, Penny S, Riginos C (2018) Historical divergences associated with intermittent land bridges overshadow isolation by larval dispersal in co-distributed species of Tridacna giant clams. J Biogeogr. CrossRefGoogle Scholar
  57. Kiessling W, Baron-Szabo RC (2004) Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 214:195–223CrossRefGoogle Scholar
  58. Kirkendale L, Paulay G (2017) Part N, revised, volume 1, chapter 9: photosymbiosis in Bivalvia. Treat Online 89:1–39Google Scholar
  59. Klumpp DW, Bayne BL, Hawkins AJS (1992) Nutrition of the giant clam Tridacna gigas (L.). I. Contribution of filter feeding and photosynthates to respirations and growth. J Exp Mar Biol Ecol 155:105–122CrossRefGoogle Scholar
  60. Klumpp DW, Griffiths CL (1994) Contributions of phototrophic and heterotrophic nutrition to the metabolic and growth requirements of four species of giant clam (Tridacnidae). Mar Ecol Prog Ser 115:103–115CrossRefGoogle Scholar
  61. Krishnan P, Dam Roy D, George G, Srivastava RC, Anand A, Murugesan S, Kaliyamoorthy M, Vikas N, Soundararajan R (2011) Elevated sea surface temperature during May 2010 induces mass bleaching of corals in the Andaman. Curr Sci 100:111–117Google Scholar
  62. LaJeunesse TC (2001) Investigating the biodivesrity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  63. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  64. LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581CrossRefPubMedGoogle Scholar
  65. LaJeunesse TC, Bhagooli R, Hidaka M, deVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161CrossRefGoogle Scholar
  66. LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:1–11CrossRefGoogle Scholar
  67. LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence therelative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800CrossRefGoogle Scholar
  68. LaJeunesse TC, Wham D, Tye Pettay D, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53:305–319CrossRefGoogle Scholar
  69. Lee SY, Jeong HJ, Kang NS, Jang TY, Jang SH, LaJeunesse TC (2015) Symbiodinium tridacnidorum sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadriaticum Freudenthal, emended Trench & Blank. Eur J Phycol 50:155–172CrossRefGoogle Scholar
  70. Leggat W, Buck BH, Grice AM, Yellowlees D (2003) The impact of bleaching on the metabolic contribution of dinoflagellate symbionts to their giant clam host. Plant Cell Environ 26:1951–1961CrossRefGoogle Scholar
  71. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278CrossRefPubMedGoogle Scholar
  72. Lim SSQ, Huang D, Soong K, Neo ML (2019) Diversity of endosymbiotic Symbiodiniaceae in giant clams at Dongsha Atoll, northern South China Sea. Symbiosis. CrossRefGoogle Scholar
  73. Lucas JS (1994) The biology, exploitation, and mariculture of giant clams (Tridacnidae). Rev Fish Sci 2:181–223CrossRefGoogle Scholar
  74. Maruyama T, Heslinga GA (1997) Fecal discharge of zooxanthellae in the giant clam Tridacna derasa, with reference to their in situ growth rate. Mar Biol 127:473–477CrossRefGoogle Scholar
  75. Mekawy MS, Madkour HA (2012) Studies on the Indo-Pacific Tridacnidae (Tridacna maxima) from the Northern Red Sea, Egypt. International Journal of Geosciences 3:1089–1095CrossRefGoogle Scholar
  76. Mieog JC, Olsen JL, Berkelmans R, Bleuler-Martinez SA, Willis BL, van Oppen MJH (2009) The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4:e6364CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mies M, Braga F, Scozzafave MS, Lemos D, Sumida PYG (2012) Early development, survival and growth rates of the giant clam Tridacna crocea (Bivalvia: Tridacnidae). Braz J Oceanogr 60:129–135CrossRefGoogle Scholar
  78. Mies M, Chaves-Filho AB, Miyamoto S, Güth AZ, Tenório AA, Castro CB, Pires DO, Calderon EN, Sumida PYG (2017a) Production of three symbiosis-related fatty acids by Symbiodinium types in clades A-F associated with marine invertebrate larvae. Coral Reefs 36:1319–1328CrossRefGoogle Scholar
  79. Mies M, Dor P, Güth AZ, Sumida PYG (2017b) Production in giant clam aquaculture: trends and challenges. Rev Fish Sci Aquac 4:286–296CrossRefGoogle Scholar
  80. Mies M, Güth AZ, Castro CB, Pires DO, Calderon EN, Pompeu M, Sumida PYG (2018) Bleaching in reef invertebrate larvae associated with Symbiodinium strains within clades A-F. Mar Biol 165:6CrossRefGoogle Scholar
  81. Mies M, Scozzafave MS, Braga F, Sumida PYG (2017c) Giant clams. In: Calado R, Olivotto I, Planas M, Holt GJ (eds) Marine Ornamental Species Aquaculture. Wiley-Blackwell Publishing, Oxford, UK, pp 510–535CrossRefGoogle Scholar
  82. Mies M, Sumida PYG, Rädecker N, Voolstra CR (2017d) Marine invertebrate larvae associated with Symbiodinium: a mutualism from the start? Front Ecol Evol 5:56CrossRefGoogle Scholar
  83. Mies M, Van Sluys M-A, Metcalfe CJ, Sumida PYG (2017e) Molecular evidence of symbiotic activity between Symbiodinium and Tridacna maxima larvae. Symbiosis 72:13–22CrossRefGoogle Scholar
  84. Mies M, Voolstra CR, Castro CB, Pires DO, Calderon EN, Sumida PYG (2017f) Expression of a symbiosis-specific gene in Symbiodinium type A1 associated with coral, nudibranch and giant clam larvae. R Soc Open Sci 4:170253CrossRefPubMedPubMedCentralGoogle Scholar
  85. Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233CrossRefGoogle Scholar
  86. Moldowan JM, Dahl J, Jacobson JR, Huizinga BJ, Fago FJ, Shetty R, Watt DS, Peters KE (1996) Chemostratigraphic reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors. Geology 24:159–162CrossRefGoogle Scholar
  87. Neo ML, Eckman W, Vicentuan K, Teo SL-M, Todd PA (2015) The ecological significance of giant clams in coral reef ecosystems. Biol Cons 181:111–123CrossRefGoogle Scholar
  88. Neo ML, Wabnitz CC, Braley RD, Heslinga GA, Fauvelot C, Van Wynsberge S, Andréfouët S, Waters C, Tan AS, Gomez ED, Costello MJ, Todd PA (2017) Giant clams (Bivalvia: Cardiidae: Tridacninae): a comprehensive update of species and their distribution, current threats and conservation status. Oceanography and Marine Biology 55:87–388Google Scholar
  89. Norton JH, Prior HC, Baillie B, Yellowlees D (1995) Atrophy of the zooxanthellal tubular system in bleached giant clams Tridacna gigas. J Invertebr Pathol 66:307–310CrossRefGoogle Scholar
  90. Norton JH, Shepherd MA, Long HM, Fitt WK (1992) The zooxanthellal tube system in the giant clam. Biol Bull 183:503–506CrossRefPubMedGoogle Scholar
  91. Pappas M (2017) The stability of the giant clam holobiont over time and during bleaching stress. Master Thesis, King Abdullah University of Science and Technology, Saudi ArabiaGoogle Scholar
  92. Plantman P, Wijnbladh X, Tedengren M (2000) Abundance, size and depth distribution of the giant clams, Tridacna squamosa and T. crocea in the Gulf of Thailand. In: Proceedings of the 5th Asian fishery forumGoogle Scholar
  93. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497CrossRefPubMedGoogle Scholar
  94. Pochon X, LaJeunesse TC, Pawlowski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol 146:17–27CrossRefGoogle Scholar
  95. Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30CrossRefPubMedGoogle Scholar
  96. Pochon X, Pawlowski J (2006) Evolution of the soritids-Symbiodinium symbiosis. Symbiosis 42:77–88Google Scholar
  97. Pochon X, Putnam HM, Gates RD (2014) Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. PeerJ 2:e394CrossRefPubMedPubMedCentralGoogle Scholar
  98. Richter C, Roa-Quiaoit H, Jantzen C, Al-Zibdah M, Kochzius M (2008) Collapse of a new living species of giant clam in the Red Sea. Curr Biol 18:1349–1354CrossRefPubMedGoogle Scholar
  99. Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284CrossRefPubMedGoogle Scholar
  100. Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579CrossRefGoogle Scholar
  101. Rosewater J (1965) The family Tridacnidae in the Indo-Pacific. Indo-Pacific Mollusca 1:347–396Google Scholar
  102. Roth MS (2014) The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol 5:422CrossRefPubMedPubMedCentralGoogle Scholar
  103. Rouzé H, Hédouin L (2018) Bilateral asymmetry in bleaching susceptibility within a giant clam, Tridacna maxima. Coral Reefs 37(3):825CrossRefGoogle Scholar
  104. Rowan R, Powers DA (1991) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73CrossRefGoogle Scholar
  105. Rowan R, Powers DA (1992) Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proc Natl Acad Sci USA 89:3639–3643CrossRefPubMedGoogle Scholar
  106. Ruscoe EJ (1962) Some records of large Tridacna specimens. Hawaiian Shell News 11:8Google Scholar
  107. Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733CrossRefPubMedGoogle Scholar
  108. Sangmanee K, Sutthacheep M (2010) Bleaching and mortality of giant clams in the Andaman Sea. In: Proceedings of the 36th congress on science and technology of ThailandGoogle Scholar
  109. Santos SR, Taylor DJ, Kinzie RA III, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111CrossRefPubMedGoogle Scholar
  110. Schneider JA (1995) Phylogeny of the Cardiidae (Mollusca, Bivalvia): Protocardiinae, Laevicardiinae, Lahilliinae, Tulongocardiinae subfam. and Pleuriocardiinae subfam. Zool Scripta 24:321–346CrossRefGoogle Scholar
  111. Schneider JA, Foighil DÓ (1999) Phylogeny of giant clams (Cardiidae: Tridacninae) based on partial mitochondrial 16S rDNA gene sequences. Mol Phylogenet Evol 13:59–66CrossRefPubMedGoogle Scholar
  112. Schoenberg DA, Trench RK (1980) Genetic variation in Symbiodinium (= Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of Symbiodinium microadriaticum. Proc R Soc B 207:405–427CrossRefGoogle Scholar
  113. Siebeck UE, Marshall NJ, Klüter A, Hoegh-Guldberg O (2006) Monitoring coral bleaching using a colour reference card. Coral Reefs 25:453–460CrossRefGoogle Scholar
  114. Smith EG, Ketchum RN, Burt JA (2017) Host specificity of Symbiodinium variants revealed by an ITS2 metahaplotype approach. ISME J 11:1500–1503CrossRefPubMedPubMedCentralGoogle Scholar
  115. Spencer T, Telek KA, Bradshaw C, Spalding MD (2000) Coral bleaching in the southern Seychelles during the 1997–1998 Indian Ocean Warm event. Marine Poll Bull 40:569–586CrossRefGoogle Scholar
  116. Stanley GD (2003) The evolution of modern corals and their early history. Earth Sci Rev 60:195–225CrossRefGoogle Scholar
  117. Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts – symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43CrossRefGoogle Scholar
  118. Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci USA 105:9256–9261CrossRefPubMedGoogle Scholar
  119. Suggett DJ, Warner ME, Leggat W (2017) Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol Evol 32:735–745CrossRefPubMedGoogle Scholar
  120. Swain TD, Chandler J, Backman V, Marcelino L (2017) Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct Ecol 31:172–183CrossRefGoogle Scholar
  121. Takabayashi M, Santos SR, Cook CB (2004) Mitochondrial DNA phylogeny of the symbiotic dinoflagellates (Symbiodinium, Dinophyta). J Phycol 40:160–164CrossRefGoogle Scholar
  122. Takishita K, Ishikura M, Koike K, Maruyama T (2003) Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia 42:469–481CrossRefGoogle Scholar
  123. Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Häggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535CrossRefPubMedGoogle Scholar
  124. Teitelbaum A, Friedman K (2008) Successes and failures in reintroducting giant clams in the Indo-Pacific region. SPC Trochus Information Bulletin 14:19–26Google Scholar
  125. Thornhill DJ, Lewis AM, Wham D, LaJeunesse TC (2014) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367CrossRefPubMedGoogle Scholar
  126. Tisdell C, Thomas WR, Tacconi L, Lucas JS (1993) The cost of production of giant clam seed Tridacna gigas. J World Aquacult Soc 24:352–360CrossRefGoogle Scholar
  127. Toonen RJ, Nakayama T, Ogawa T, Rossiter A, Delbeek JC (2012) Growth of cultured giant clams (Tridacna spp.) in low pH, high-nutrient seawater: species-specific effects of substrate and supplemental feeding under acidification. J Mar Biol Assoc U. K. 92:731–740CrossRefGoogle Scholar
  128. Tun K, Chou LM, Low J, Yeemin T, Phongsuwan N, Setiasih N, Wilson J, Amri AY, Adzis KAA, Lane D, van Bochove J-W, Kluskens B, Long NV, Tuan VS, Gomez ED (2010) A regional overview on the 2010 coral bleaching event in Southeast Asia. In: Kimura T, Tun KC (eds) Status of Coral Reefs in East Asian Seas Region: 2010. Japan Ministry of the Environment, Tokyo, pp 16–27Google Scholar
  129. Turner JR, Hardman E, Klaus R, Fagoonee I, Daby D, Bhagooli R, Persands S (2000) The reefs of Mauritius. In: Souter D, Obura D, Linden O (eds) Coral Reef Degradation in the Indian Ocean. Cordio, Stockholm, pp 94–107Google Scholar
  130. Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484CrossRefPubMedGoogle Scholar
  131. Van Wynsberge S, Andréfouët S (2017) The future of giant clam-dominated lagoon ecosystems facing climate change. Current Climate Change Reports 3:261–270CrossRefGoogle Scholar
  132. Van Wynsberge S, Andréfouët S, Gaertner-Mazouni N, Wabnitz CCC, Gilbert A, Remoissenet G, Payri C, Fauvelot C (2016) Drivers of density for the exploited giant clam Tridacna maxima: a meta-analysis. Fish and Fisheries 17:567–584CrossRefGoogle Scholar
  133. Van Wynsberge S, Andréfouët S, Gaertner-Mazouni N, Remoissenet G (2018) Consequences of an uncertain mass mortality regime triggered by climate variability on giant clam population management in the Pacific Ocean. Theor Popul Biol 119:37–47CrossRefPubMedGoogle Scholar
  134. Vinoth R, Gopi M, Ajith Kumar TT, Thangaradjou T, Balasubramanian T (2012) Coral reef bleaching at Agatti Island of Lakshadweep Atolls, India. J Ocean U China 11:105–110CrossRefGoogle Scholar
  135. Watson S-A, Southgate PC, Miller GM, Moorhead JA, Knauer J (2012) Ocean acidification and warming reduce juvenile survival of the fluted giant clam, Tridacna squamosa. Molluscan Res 32:177–180Google Scholar
  136. Weber MX (2009) The biogeography and evolution of Symbiodinium in giant clams (Tridacnidae). Ph.D. Dissertation, University of California, BerkeleyGoogle Scholar
  137. Wenger A, Fabricius KE, Jones GP, Brodie JE (2015) Effects of sedimentation, eutrophication and chemical pollution on coral reef fishes. In: Mora C (ed) Ecology of Fishes on Coral Reefs. Cambridge University Press, Cambridge, UK, pp 145–153CrossRefGoogle Scholar
  138. Wietheger A, Starzak DE, Gould KS, Davy SK (2018) Differential ROS generation in response to stress in Symbiodinium spp. Biol Bull 234:11–21CrossRefPubMedGoogle Scholar
  139. White M (2019) Initial assessment of a new coral bleaching event at Tongareva Atoll in the northern Cook Islands. Hakono Hararanga Incorporated reportGoogle Scholar
  140. Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Oceanographic Institute – University of São Paulo (IO-USP)São PauloBrazil

Personalised recommendations