Advertisement

Coral Reefs

, Volume 38, Issue 6, pp 1159–1172 | Cite as

Population differentiation across small distances in a coral reef-associated vermetid (Ceraesignum maximum) in Palau

  • Taha Soliman
  • Iria Fernandez-Silva
  • Hiroki Kise
  • Haruko Kurihara
  • James Davis ReimerEmail author
Report

Abstract

Despite being one of the world’s leading countries in coral reef conservation and management, very little data exist for coral reef-associated species in the island nation of Palau, hampering managers’ ability to more effectively protect coral reef ecosystems. Here we examine populations of the vermetid Ceraesignum maximum, a common species on coral reefs, with short or absent pelagic larval stage, in order to elucidate patterns of gene flow within Palauan reefs. We collected specimens (n = 582) from 20 sites across Palau. Cytochrome oxidase subunit I analyses show private haplotypes at all sites examined, with a clear separation between outer and inner reef locations, and a unique population within isolated Nikko Bay. Oceanographic isolation between the waters of Nikko Bay, inner and outer reefs may contribute to our observed genetic differentiation. Our results indicate past demographic expansion of C. maximum across the region and also indicate that multiple sites of both inner and outer reef locations would need to be protected to conserve this species’ genetic diversity, including unique Nikko Bay. These results demonstrate the utility of C. maximum as a good species to investigate gene flow across small scales (< 10 km) as seen in Palau.

Keywords

Mollusca Population genetics mtDNA COI Connectivity 

Notes

Acknowledgements

The authors thank Dr. Rob Toonen and Anuschka Faucci (Hawai’i Institute of Marine Biology) for the initial idea of utilizing Ceraesignum in population genetic analyses. Arius Merep (Palau International Coral Reef Center; PICRC) is thanked for the acquisition of some specimens, and the other staff at PICRC are thanked for their help with logistics. Zoe Kintaro, Minelli-Rain Olkeriil, Leah Marie Bukurou, Bill Tony, Blesam Tarkong, Skarlee Renguul, Kaitlin Ord Isalias, Zacateca Adelbai and Nelson Masang, Jr. (all Palau Community College; PCC) are thanked for laboratory help. This work was funded under the SATREPS scheme supported by the Japan Science and Technology Agency (JST) and the Japan International Cooperation Agency (JICA) as part of the P-CoRIE project between the University of the Ryukyus, PICRC, and PCC. IF-S was supported by a Marie Curie Action of the European Union's Seventh Framework Programme (FP7/2007–2013) under REA Grant Agreement 600391 (FELLOWSEA: Campus do Mar International Fellowship Program). Comments from two anonymous reviewers greatly improved an earlier version of the manuscript.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

338_2019_1849_MOESM1_ESM.docx (22 kb)
Supplementary file1 (DOCX 23 kb)

References

  1. Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc R Soc B: Biol Sci 275:1803–1809CrossRefGoogle Scholar
  2. Chow S, Jeffs A, Miyake Y, Konishi K, Okazaki M, Suzuki N, Abdullah MF, Imai H, Wakabayasi T, Sakai M (2011) Genetic isolation between the western and eastern Pacific populations of pronghorn spiny lobster Panulirus penicillatus. PLoS ONE 6:e29280CrossRefGoogle Scholar
  3. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714CrossRefGoogle Scholar
  4. Colin PL (2009) Marine environments of Palau. Coral Reef Research Foundation, KororGoogle Scholar
  5. Cros A, Toonen RJ, Donahue MJ, Karl SA (2017) Connecting Palau’s marine protected areas: a population genetic approach to conservation. Coral Reefs 36:735–748CrossRefGoogle Scholar
  6. Done TJ (1982) Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1:95–107CrossRefGoogle Scholar
  7. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  8. Fauvelot C, Bernardi G, Planes S (2003) Reductions in the mitochondrial DNA diversity of coral reef fish provide evidence of population bottlenecks resulting from Holocene sea-level change. Evolution 57:1571–1583CrossRefGoogle Scholar
  9. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  10. Franzitta G, Capruzzi E, La Marca E, Milazzo M, Chemello R (2016) Recruitment patterns in an intertidal species with low dispersal ability: the reef-building Dendropoma cristatum (Biondi, 1859) (Mollusca: Gastropoda). Ital J Zool 83:400–407CrossRefGoogle Scholar
  11. Goatley CHR, González-Cabello A, Bellwood DR (2016) Reef-scale partitioning of cryptobenthic fish assemblages across the Great Barrier Reef, Australia. Mar Ecol Prog Ser 544:271–280CrossRefGoogle Scholar
  12. Golbuu Y, Gouezo M, Kurihara H, Rehm L, Wolanski E (2016) Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35:909–918CrossRefGoogle Scholar
  13. Gorospe KD, Karl SA (2013) Genetic relatedness does not retain spatial pattern across multiple spatial scales: dispersal and colonization in the coral, Pocillopora damicornis. Mol Ecol 22:3721–3736CrossRefGoogle Scholar
  14. Gotoh RO, Chiba SN, Goto TV, Tamate HB, Hanzawa N (2011) Population genetic structure of the striped silverside, Atherinomorus endrachtensis (Atherinidae, Atheriniformes, Teleostei), inhabiting marine lakes and adjacent lagoons in Palau: marine lakes are “Islands” for marine species. Genes Gen Syst 86:324–337Google Scholar
  15. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9. https://palaeo-electronica.org/2001_1/past/issue1_01.htm
  16. Hui M, Kraemer WE, Seidel C, Nuryanto A, Joshi A, Kochzius M (2016) Comparative genetic population structure of three endangered giant clams (Cardiidae: Tridacna species) throughout the Indo-West Pacific: implications for divergence, connectivity and conservation. J Molluscan Stud 82:403–414CrossRefGoogle Scholar
  17. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefGoogle Scholar
  18. Kuhner MK (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770CrossRefGoogle Scholar
  19. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  20. Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Meth Ecol Evol 6:1110–1116CrossRefGoogle Scholar
  21. Ludt WB, Bernal MA, Bowen BW, Rocha LA (2012) Living in the past: Phylogeography and population histories of Indo-Pacific wrasses (genus Halichoeres) in shallow lagoons versus outer reef slopes. PLoS ONE 7(6):e38042CrossRefGoogle Scholar
  22. Narum SR (2006) Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv Genet 7:783–787CrossRefGoogle Scholar
  23. Poutiers JM (1998) Gastropods. In: Carpenter KE, Niem VH (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 1. Seaweeds, corals, bivalves, and gastropods. Rome, FAO. pp 363–648Google Scholar
  24. Poutiers B, Gélin P, Bruggemann JH, Pratlong M, Magalon H (2017) Population differentiation or species formation across the Indian and the Pacific Oceans? An example from the brooding marine hydrozoan Macrorhynchia phoenicea. Ecol Evol 7:8170–8186CrossRefGoogle Scholar
  25. Roberts CM, McClean CJ, Veron JE, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284CrossRefGoogle Scholar
  26. Rocha L, Craig M, Bowen B (2007) Phylogeography and the conservation of coral reef fishes. Coral Reefs 26:501–512CrossRefGoogle Scholar
  27. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9(3):552–569PubMedGoogle Scholar
  28. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Garcia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34:3299–3302CrossRefGoogle Scholar
  29. Safriel UN, Hadfield MG (1988) Sibling speciation by life-history divergence in Dendropoma (Gastropoda; Vermetidae). Biol J Linn Soc 35:1–13CrossRefGoogle Scholar
  30. Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152(3):1079–1089PubMedPubMedCentralGoogle Scholar
  31. Selkoe KA, Toonen RJ (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol Prog Ser 436:291–305CrossRefGoogle Scholar
  32. Shamberger KEF, Cohen AL, Golbuu Y, McCorkle DC, Lentz SJ, Barkley HC (2014) Diverse coral communities in naturally acidified waters of a Western Pacific reef: diverse coral reefs in acidified waters. Geophys Res Lett 41:499–504CrossRefGoogle Scholar
  33. Shima JS, McNaughtan D, Strong AT (2015) Vermetid gastropods mediate within-colony variation in coral growth to reduce rugosity. Mar Biol 162:1523–1530CrossRefGoogle Scholar
  34. Shinzato C, Mungpakdee S, Arakaki N, Satoh N (2015) Genome-wide SNP analysis explains coral diversity and recovery in the Ryukyu Archipelago. Sci Rep 5:18211CrossRefGoogle Scholar
  35. Thacker CE (2004) Population structure in two species of the reef goby Gnatholepis (Teleostei: Perciformes) among four South Pacific island groups. Coral Reefs 23:357–366CrossRefGoogle Scholar
  36. Timm J, Kochzius M, Madduppa HH, Neuhaus AI, Dohna T (2017) Small scale genetic population structure of coral reef organisms in Spermonde Archipelago, Indonesia. Frontiers in Marine Science 4:294CrossRefGoogle Scholar
  37. Tsang LM, Chan BK, Wu TH, Ng WC, Chatterjee T, Williams GA, Chu KH (2008) Population differentiation in the barnacle Chthamalus malayensis: postglacial colonization and recent connectivity across the Pacific and Indian Oceans. Mar Ecol Prog Ser 364:107–118CrossRefGoogle Scholar
  38. van Woesik R, Houk P, Isechal AL, Idechong JW, Victor S, Golbuu Y (2012) Climate-change refugia in the sheltered bays of Palau: analogs of future reefs. Ecol Evol 2:2474–2484CrossRefGoogle Scholar
  39. Watanabe A, Kayanne H, Hata H, Kudo S, Nozaki K, Kato K, Negishi A, Ikeda Y, Yamano H (2006) Analysis of the seawater CO2 system in the barrier reef–lagoon system of Palau using total alkalinity-dissolved inorganic carbon diagrams. Limnol Oceanogr 51:1614–1628CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and ScienceUniversity of the RyukyusNishiharaJapan
  2. 2.National Institute of Oceanography and FisheriesCairoEgypt
  3. 3.Department of Biochemistry, Genetics and ImmunologyUniversity of VigoVigoSpain
  4. 4.International Coral Reef CenterKororPalau
  5. 5.Tropical Biosphere Research CenterUniversity of the RyukyusNishiharaJapan
  6. 6.Faculty of ScienceUniversity of the RyukyusNishiharaJapan

Personalised recommendations