Coral Reefs

, Volume 38, Issue 2, pp 311–319 | Cite as

Reduced Symbiodiniaceae diversity in Palythoa tuberculosa at a heavily acidified coral reef

  • Hin Boo WeeEmail author
  • Haruko Kurihara
  • James Davis Reimer


Symbiodiniaceae diversity in hosts is known to change with the environment and particularly with temperature and light intensity. However, higher levels of pCO2, as could be expected under future ocean acidification scenarios, have been documented to show little to no effect in influencing the diversity of Symbiodiniaceae in hosts in previous studies. In this study, we examined hypervariable psbAncr sequences to identify the Cladocopium (former Symbiodinium ‘Clade C’) diversity within the zooxanthellate zoantharian Palythoa tuberculosa at an acidified reef in southern Japan. Palythoa tuberculosa were collected from a reef at the volcanic island of Iwotorishima in southern Japan; specimens from a high pCO2 site and from a nearby control (normal pCO2) site (Inoue et al. in Nat Clim Change 3:683–687, 2013). We observed a statistically significant reduction in Cladocopium diversity at the high pCO2 site with only one Cladocopium lineage present, compared to at the control site with two lineages present. Our results demonstrate that higher pCO2 can potentially negatively influence the diversity of host Symbiodiniaceae within anthozoan hosts, an important implication in the face of ongoing ocean acidification and climate change.


Symbiodiniaceae Cladocopium Zoantharian Acidified Reef Iwotorishima psbAncr 



This research was conducted in collaboration with Dr. H. Kayanne, Dr. S. Yamamoto (both U. Tokyo), and Y. Ide (Oceanic Planning Corp.). This work was partially funded by JSPS Kakenhi-Kiban (A 16H01766) to HK, JSPS Kakenhi-Kiban B grant entitled ‘Global evolution of Brachycnemina and their Symbiodinium’ to JDR, and Sasagawa Research Foundation funding to BHW (29-751). Two anonymous reviewers’ comments improved an earlier version of this manuscript.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material (6 kb)
psbAncr forward sequences alignment of Cladocopium extracted from Palythoa tuberculosa found at Iwotorishima. 8 reference sequences (MF593405, MF593402, MF593407, MF593406, MF593415, MF593409, MF593427, MF593447) were added in the alignment to distinguish the lineages of Cladocopium in this study (n=10). File in nexus format (NEXUS 5 kb)
338_2019_1776_MOESM2_ESM.nex (8 kb)
psbAncr reverse sequences alignment of Cladocopium extracted from Palythoa tuberculosa found at Iwotorishima. File in nexus format (NEX 7 kb)
338_2019_1776_MOESM3_ESM.pdf (127 kb)
Genetic differences (GD) of Cladocopium extracted from P. tuberculosa found at Iwotorishima plotted on principal coordinate analysis. A) ITS2 (PCoA 100.00% coverage) and B) psbAncr (PCoA, 93.89% coverage), the symbols represent the sites of which the specimens were collected. The right labelled specimens represent the smaller Lineage 4 Cladocopium cluster found only at the control site. On the other hand, the top left labelled specimens (a: S17L08_Control; b: S13L08_Control) are specimens with small base-pair differences from the larger Lineage 1 Cladocopium cluster (bottom left, not labelled) (PDF 126 kb)


  1. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences 105:17442–17446CrossRefGoogle Scholar
  2. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics 34:661–689CrossRefGoogle Scholar
  3. Borell EM, Steinke M, Horwitz R, Fine M (2014) Increasing pCO2 correlates with low concentrations of intracellular dimethylsulfoniopropionate in the sea anemone Anemonia viridis. Ecology and Evolution 4:441–449CrossRefGoogle Scholar
  4. Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ (2011) Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnology and Oceanography 56:927–938CrossRefGoogle Scholar
  5. Burnett WJ (2002) Longitudinal variation in algal symbionts (zooxanthellae) from the Indian Ocean zoanthid Palythoa caesia. Marine Ecology Progress Series 234:105–109CrossRefGoogle Scholar
  6. Caldeira K, Wickett ME (2003) Oceanography: Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  7. Davies SW, Ries JB, Marchetti A, Castillo KD (2018) Symbiodinium functional diversity in the coral Siderastrea siderea is influenced by thermal stress and reef environment, but not ocean acidification. Frontiers in Marine Science 5:150CrossRefGoogle Scholar
  8. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1:169–192CrossRefGoogle Scholar
  9. Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microbial Ecology 60:250–263CrossRefGoogle Scholar
  10. Graham ER, Sanders RW (2016) Species-specific photosynthetic responses of symbiotic zoanthids to thermal stress and ocean acidification. Marine Ecology 37:442–458CrossRefGoogle Scholar
  11. Grupstra CG, Coma R, Ribes M, Leydet KP, Parkinson JE, McDonald K, Catlla M, Voolstra CR, Hellberg ME, Coffroth MA (2017) Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes. Coral Reefs 36:981–985CrossRefGoogle Scholar
  12. Hall TA (1999) BioEdit. Nucleic Acids Symposium Series 41:95–98Google Scholar
  13. Hasegawa M, Kishino H, Yano TA (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22:160–174CrossRefGoogle Scholar
  14. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefGoogle Scholar
  15. Horwitz R, Borell EM, Yam R, Shemesh A, Fine M (2015) Natural high pCO2 increases autotrophy in Anemonia viridis (Anthozoa) as revealed from stable isotope (C, N) analysis. Scientific Reports 5:1–9CrossRefGoogle Scholar
  16. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefGoogle Scholar
  17. Hunter CL, Morden CW, Smith CM (1997) The utility of ITS sequences in assessing the relationships among zooxanthellae and corals. Proceedings of the 8th International Coral Reef Symposium 2:99–1602Google Scholar
  18. Inoue S, Kayanne H, Yamamoto S, Kurihara H (2013) Spatial community shift from hard to soft corals in acidified water. Nature Climate Change 3:683–687CrossRefGoogle Scholar
  19. Januar HI, Zamani NP, Soedarma D, Chasanah E (2016) Changes in soft coral Sarcophyton sp. abundance and cytotoxicity at volcanic CO2 seeps in Indonesia. AIMS Environmental Science 3:239–248CrossRefGoogle Scholar
  20. Januar HI, Zamani NP, Soedharma D, Chasanah E (2017) Cembranoids content of soft coral Sarcophyton from acidified environment at volcano island, Indonesia. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology 12:35–40CrossRefGoogle Scholar
  21. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research, report of a workshop held in 18-20 April 2005, St, Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey, 88 ppGoogle Scholar
  22. Kroeker KJ, Micheli F, Gambi MC (2013) Ocean acidification causes ecosystem shifts via altered competitive interactions. Nature Climate Change 3:156–159CrossRefGoogle Scholar
  23. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870–1874CrossRefGoogle Scholar
  24. Kunihiro S, Reimer JD (2018) Phylogenetic analyses of Symbiodinium isolated from Waminoa and their anthozoan hosts in the Ryukyu Archipelago, southern Japan. Symbiosis: 1-12Google Scholar
  25. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: In search of a ‘species’ level marker. Journal of Phycology 37:866–880CrossRefGoogle Scholar
  26. LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE 6:11CrossRefGoogle Scholar
  27. LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology. Google Scholar
  28. Lidbury I, Johnson V, Hall-Spencer JM, Mun CB, Cunliffe M (2012) Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem. Marine Pollution Bulletin 64:1063–1066CrossRefGoogle Scholar
  29. Lucas MQ, Stat M, Smith MC, Weil E, Schizas NV (2016) Symbiodinium (internal transcribed spacer 2) diversity in the coral host Agaricia lamarcki (Cnidaria: Scleractinia) between shallow and mesophotic reefs in the northern Caribbean (20–70 m). Marine Ecology 37:1079–1087CrossRefGoogle Scholar
  30. Moore RB, Ferguson KM, Loh WKW, Hoegh-Guldberg O, Carter DA (2003) Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. International Journal of Systematic and Evolutionary Microbiology 53:1725–1734CrossRefGoogle Scholar
  31. Noda H, Parkinson JE, Yang SY, Reimer JD (2017) A preliminary survey of zoantharian endosymbionts shows high genetic variation over small geographic scales on Okinawa-jima Island, Japan. PeerJ 5.
  32. Noonan SHC, Fabricius KE, Humphrey C (2013) Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide. PLoS ONE 8.
  33. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  34. Pecheux M (2002) CO2 Increase, a direct cause of coral reef mass bleaching. Marine Life 12:63–68Google Scholar
  35. Polak O, Loya Y, Brickner I, Kramarski-Winter E, Benayahu Y (2011) The widely-distributed Indo-Pacific zoanthid Palythoa tuberculosa: a sexually conservative strategist. Bulletin of Marine Science 87:605–621CrossRefGoogle Scholar
  36. Reimer JD (2010) Key to field identification of shallow water brachycnemic zoanthids (Order Zoantharia: Suborder Brachycnemina) present in Okinawa. Galaxea, Journal of Coral Reef Studies 12:23–29CrossRefGoogle Scholar
  37. Reimer JD, Herrera M, Gatins R, Roberts MB, Parkinson JE, Berumen ML (2017) Latitudinal variation in the symbiotic dinoflagellate Symbiodinium of the common reef zoantharian Palythoa tuberculosa on the Saudi Arabian coast of the Red Sea. Journal of Biogeography: 1–13Google Scholar
  38. Reimer JD, Irei Y, Fujii T, Yang SY (2013) Molecular analyses of shallow-water zooxanthellate zoanthids (Cnidaria: Hexacorallia) from Taiwan and their Symbiodinium spp. Zoological Studies 52:16CrossRefGoogle Scholar
  39. Reimer JD, Takishita K, Ono S, Maruyama T, Tsukahara J (2006) Latitudinal and intracolony ITS-rDNA sequence variation in the symbiotic dinoflagellate genus Symbiodinium (Dinophyceae) in Zoanthus sansibaricus (Anthozoa: Hexacorallia). Phycological Research 54:122–132CrossRefGoogle Scholar
  40. Reimer JD, Todd PA (2009) Preliminary molecular examination of zooxanthellate zoanthids (Hexacorallia: Zoantharia) and associated zooxanthellae (Symbiodinium spp.) diversity in Singapore. The Raffles Bulletin of Zoology 22:103–120Google Scholar
  41. Rowan, R., & Powers, D. A. (1992). Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proceedings of the National Academy of Sciences USA, 89, 3639–3643.CrossRefGoogle Scholar
  42. Schmittner A, Oschilies A, Matthews HD, Galbraith ED (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochemical Cycles 22:GB1013CrossRefGoogle Scholar
  43. Silverstein RN, Cunning R, Baker AC (2017) Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment. The Journal of Experimental Biology. Google Scholar
  44. Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America 106:1704–1709CrossRefGoogle Scholar
  45. Sutton AJ, Wanninkhof R, Sabine CL, Feely RA, Cronin MF, Weller RA (2017) Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean. Geophysical Research Letters 44:5627–5636CrossRefGoogle Scholar
  46. Tonk L, Sampayo EM, Weeks S, Magno-Canto M, Hoegh-Guldberg O (2013) Host-specific interactions with environmental factors shape the distribution of Symbiodinium across the Great Barrier Reef. PLoS ONE 8:14CrossRefGoogle Scholar
  47. Towanda T, Thuesen EV (2012) Prolonged exposure to elevated CO2 promotes growth of the algal symbiont Symbiodinium muscatinei in the intertidal sea anemone Anthopleura elegantissima. Biology Open 1:615–621CrossRefGoogle Scholar
  48. Ventura P, Jarrold MD, Merle PL, Barnay-Verdier S, Zamoum T, Rodolfo-Metalpa R, Calosi P, Furla P (2016) Resilience to ocean acidification: Decreased carbonic anhydrase activity in sea anemones under high pCO2 conditions. Marine Ecology Progress Series 559:257–263CrossRefGoogle Scholar
  49. Watson AJ, Schuster U, Bakker DC, Bates NR, Corbière A, González-Dávila M, Friedrich T, Hauck J, Heinze C, Johannessen T, Körtzinger A (2009) Tracking the variable North Atlantic sink for atmospheric CO2. Science 326:1391–1393CrossRefGoogle Scholar
  50. White TJ, Bruns T, Lee SJWT, Taylor JL (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322Google Scholar
  51. Wooldridge SA (2012) A hypothesis linking sub-optimal seawater pCO2 conditions for cnidarian-Symbiodinium symbioses with the exceedance of the interglacial threshold (> 260 ppmv). Biogeosciences 9:1709–1723CrossRefGoogle Scholar
  52. Yang SY, Bourgeois C, Ashworth C, Reimer JD (2013) Palythoa zoanthid ‘barrens’ in Okinawa: examination of possible environmental causes. Zoological Studies 52:11CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Engineering and ScienceUniversity of the RyukyusNishiharaJapan
  2. 2.Tropical Biosphere Research CenterUniversity of the RyukyusNishiharaJapan

Personalised recommendations