Coral Reefs

, Volume 38, Issue 1, pp 15–20 | Cite as

First description of polyp bailout in cold-water octocorals under aquaria maintenance

  • Maria RakkaEmail author
  • Meri Bilan
  • Antonio Godinho
  • Juancho Movilla
  • Covadonga Orejas
  • Marina Carreiro-Silva


Cnidarians, characterized by high levels of plasticity, exhibit remarkable mechanisms to withstand or escape unfavourable conditions including reverse development which describes processes of transformation of adult stages into early developmental stages with higher mobility. Polyp bailout is a stress-escape response common among scleractinian species, consisting of massive detachment of live polyps and subsequent death of the mother colony. Here, we describe two cases of polyp bailout in the cold-water octocoral species Acanthogorgia armata and Acanella arbuscula. During maintenance in aquaria, specimens of both species presented coenosarc withdrawal and loss of sclerites, followed by detachment of intact polyps. This is a strong indication of reverse development which can be a very important strategy under stress conditions and has not been reported before in cold-water octocorals.


Reverse development Deep-sea Stress response Life history traits Cnidaria Alcyonacea 



This study was supported by the European Union’s Horizon 2020 research and innovation program, under the ATLAS (Grant Agreement No. 678760) and MERCES project (Grant Agreement No. 689518). This output reflects only the author’s view, and the European Union cannot be held responsible for any use that may be made of the information contained therein. The MEDWAVES cruise was supported by the ATLAS project and the Spanish Ministry of Economy, Industry and Competitivity. Maria Rakka is funded by a DRCT Ph.D. Grand (Reference M3.1.a/F/047/2015.). We are grateful to the members of the Rebikoff-Niggeler Foundation, the crew of the manned submersible Lula and Dr. Andreia Braga-Henriques for collection and maintenance of the coral specimens of Acanthogorgia armata. We are also grateful to all the crew of the RV Sarmiento de Gamboa, the Marine Technology Unit (UTM – CSIC), the ROV team from ACSM and all MEDWAVES cruise participants for their support during sampling and maintenance of Acanella arbuscula.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.


  1. Bavestrello G, Puce S, Cerrano C, Castellano L, and Arillo A (2000). Water movement activating fragmentation: a new dispersal strategy for hydractiniid hydroids. J. Mar. Biol. Assoc. U.K. 80:361–362Google Scholar
  2. Beazley LI, Kenchington EL (2012) Reproductive biology of the deep-water coral Acanella arbuscula (Phylum Cnidaria: class anthozoa: Order alcyonacea), Northwest Atlantic. Deep Sea Res Part I Oceanogr Res Pap 68:92–104CrossRefGoogle Scholar
  3. Capel KCC, Migotto AE, Zilberberg C, Kitahara MV (2014) Another tool towards invasion? Polyp bail-out in Tubastraea coccinea. Coral Reefs 33:1165. CrossRefGoogle Scholar
  4. Crab R, Avnimelech Y, Defoirdt T, Bossier P, Verstraete W (2007) Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270:1–4CrossRefGoogle Scholar
  5. Cruz JV, Pacheco D, Cymbron R, Mendes S (2010) Monitoring of the groundwater chemical status in the Azores archipelago (Portugal) in the context of the EU Water Framework Directive. Environmental Earth Sciences 61(1):173–186CrossRefGoogle Scholar
  6. Dahan M, Benayahu Y (1997) Clonal propagation by the azooxanthellate octocoral Dendronephthya hemprichi. Coral Reefs 16:5–12CrossRefGoogle Scholar
  7. Domart-Coulon I, Tambutté S, Tambutté E, Allemand D (2004) Short term viability of soft tissue detached from the skeleton of reef-building corals. J Exp Mar Bio Ecol 309:199–217CrossRefGoogle Scholar
  8. Fordyce AJ, Camp EF, Ainsworth TD (2017) Polyp bailout in Pocillopora damicornis following thermal stress [version 2; referees: 2 approved]. F1000Research 6:687Google Scholar
  9. Gohar HAF (1940) Studies on the Xeniidae of the Red Sea: their ecology, physiology, taxonomy and phylogeny. Publ Mar Biol Stn Al Ghardaqa 3:27–78Google Scholar
  10. Goreau TF, Goreau NI (1959) The physiology of skeleton formation in corals II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol Bull 117:239–250CrossRefGoogle Scholar
  11. Jackson JBC, Coates AG (1986) Life Cycles and Evolution of Clonal (Modular) Animals. Philosophical Transactions of the Royal Society of London B: Biological Sciences 313:7–22CrossRefGoogle Scholar
  12. Johnson JY (1862) Descriptions of two corals from Madeira, Belonging to the genera Primnoa and Mopsea. Proc Sci Meet Zool Soc Lond 1862:245–246CrossRefGoogle Scholar
  13. Kayal E, Bentlage B, Pankey MS, Ohdera AH, Medina M, Plachetzki DC, Collins AG, Ryan JF (2018) Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evolutionary Biology 18(1):68CrossRefGoogle Scholar
  14. Kruzic P (2007) Polyp expulsion of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in extreme sea temperature conditions. Nat Croat 16:211–214Google Scholar
  15. Kvitt H, Kramarsky-Winter E, Maor-Landaw K, Zandbank K, Kushmaro A, Rosenfeld H, Fine M, Tchernov D (2015) Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis. Proc Natl Acad Sci USA 112:2082–2086CrossRefGoogle Scholar
  16. Lee CS, Walford J, Goh BPL (2012) The effect of benthic macroalgae on coral settlement. In: Tan K-S (ed) Contributions to marine science: A commemorative, vol celebrating. 10 years of research on St John’s Island. National University of Singapore, Singapore, pp 89–93Google Scholar
  17. Lesh-Laurie GE, Corriel R (1973) Scyphistoma regeneration from isolated tentacles in Aurelia aurita. J. Mar. Biol. Assoc. U.K. 53: 885–894Google Scholar
  18. McFadden CS, France SC, Sánchez JA, Alderslade P (2006) A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol Phylogenet Evol 41:513–527CrossRefGoogle Scholar
  19. Medina M, Collins AG, Takaoka TL et al (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci USA 103:9096–9100CrossRefGoogle Scholar
  20. Orejas C, Taviani M, Ambroso S, Andreou V, Bilan M, Bo M, Brooke S, Buhl-Mortensen P, Cordes E, Dominguez-Carrió C, Ferrier-Pagès C, Godinho A, Gori A, Grinyó J, Gutiérrez C, Hennige S, Jiménez C, Larsson A, Lartaud F, Lunden J, Maier C, Maier S, Movilla J, Murray F, Peru E, Purser A, Rakka M, Reynaud S, Roberts JM, Siles P, Strömberg SM, Thomsen L, van Oevelen D, Veiga A, Carreiro-Silva M (in press) Cold-water corals in aquaria: advances and challenges. A focus in the Mediterranean. In Past, present and future: Mediterranean Cold-water corals, series Coral Reefs of the World, SpringerGoogle Scholar
  21. Parent S, Morin A (2000) N budget as water quality management tool in closed aquatic mesocosms. Water research 34(6):1846–1856CrossRefGoogle Scholar
  22. Pearse VB (2002) Prodigies of propagation: the many modes of clonal replication in boloceroidid sea anemones (Cnidaria, Anthozoa, Actiniaria). Invertebr. Reprod. Dev. 41:201–213CrossRefGoogle Scholar
  23. Piraino S, De Vito D, Schmich J et al (2004) Reverse development in Cnidaria. Can J Zool Can Zool 82:1748–1754CrossRefGoogle Scholar
  24. Richmond R (1985) Reversible metamorphosis in coral planula larvae. Mar Ecol Prog Ser 22:181–185CrossRefGoogle Scholar
  25. Sammarco P (1982) Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals. Mar Ecol Prog Ser 10:57–65CrossRefGoogle Scholar
  26. Serrano E, Coma R, Inostroza K, Serrano O (2017) Polyp bail-out by the coral Astroides calycularis (Scleractinia. Mar Biodivers, Dendrophylliidae). Google Scholar
  27. Shapiro OH, Kramarsky-Winter E, Gavish AR, Stocker R, Vardi A (2016) A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nature communications 4(7):10860CrossRefGoogle Scholar
  28. Strömberg SM, Larsson AI (2017) Larval behavior and longevity in the cold-water coral Lophelia pertusa indicate potential for long distance dispersal. Frontiers in Marine Science 4:411CrossRefGoogle Scholar
  29. Sun Z, Hamel JF, Mercier A (2010) Planulation periodicity, settlement preferences and growth of two deep-sea octocorals from the northwest Atlantic. Mar Ecol Prog Ser 410:71–87CrossRefGoogle Scholar
  30. Sun Z, Hamel JF, Mercier A (2011) Planulation, larval biology, and early growth of the deep-sea soft corals Gersemia fruticosa and Duva florida (Octocorallia: Alcyonacea). Invertebrate biology 130(2):91–99CrossRefGoogle Scholar
  31. Verrill AE (1878) Notice of recent additions to the marine fauna of the eastern coast of North America, Part 2. Am J Sci Arts 16(3):371–378CrossRefGoogle Scholar
  32. Zapata F, Goetz FE, Smith SA, Howison M, Siebert S, Church SH, Sanders SM, Ames CL, McFadden CS, France SC, Daly M (2015) Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One 10(10):e0139068CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IMAR – Institute of Marine ResearchUniversity of the AzoresHortaPortugal
  2. 2.MARE – Marine and Environmental Sciences CentreHortaPortugal
  3. 3.OKEANOS Research Unit-Center of the University of the AzoresHortaPortugal
  4. 4.Instituto de Ciencias del Mar (ICM-CSIC)BarcelonaSpain
  5. 5.Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Estación de Investigación Jaume FerrerMahónSpain
  6. 6.Instituto Español de Oceanografía, Centro Oceanográfico de BalearesPalmaSpain

Personalised recommendations