Advertisement

Mammalian Genome

, Volume 15, Issue 6, pp 482–491 | Cite as

Fine mapping of a murine growth locus to a 1.4-cM region and resolution of linked QTL

  • Julian K. Christians
  • Peter D. Keightley
Article

Abstract

Previous work identified a QTL affecting murine size (particularly tail length) in a cross between C57BL/6J and DBA/2J mice and refined its location to an 8-cM region between D1Mit30 and D1Mit57. The present study used recombinant progeny testing to fine map this QTL. Individuals from a partially congenic strain carrying chromosomes recombinant between D1Mit30 and D1Mit57 were mated to DBA/2J, generating 942 progeny. Two QTL affecting 10-week tail length were identified in this population: one at 9.7 cM distal to D1Mit30 (the position estimated in previous work), and another of smaller effect near D1Mit30. A second population (n = 787) was generated by mating siblings from the progeny test population that were heterozygous for the same segment of chromosome, including only recombinants between D1Mit265 and D1Mit57. In the latter population, two QTL were also identified: one at 10.2 cM distal to D1Mit30, and another of smaller effect at the distal end of the mapped region (at D1Mit150). When the two populations were analyzed together, the estimated location of the central QTL was 10.2 cM distal to D1Mit30 and there was marginally significant evidence of the distal QTL. The central QTL explained approximately 7% of the phenotypic variance, and the 95% confidence interval for its position (determined by bootstrapping) was a 1.4-cM region, approximately the region from D1Mit451 to D1Mit219. The central QTL also affected tail length and body mass at 3 and 6 weeks of age, but to a lesser degree than 10-week tail length.

Keywords

Bone Mineral Density Tail Length Dominance Effect Congenic Strain Recombinant Chromosome 

Notes

Acknowledgments

We thank Fiona Oliver for help with the maintenance of the mice, Zoë Hodgson for assistance with the statistical analyses and two anonymous referees for helpful comments. We acknowledge the Biotechnology and Biological Research Council (U.K.) and the Natural Sciences and Engineering Research Council of Canada for financial support.

References

  1. Bünger, L, Laidlaw, A, Bulfield, G, Eisen, EJ, Medrano, JF,  et al. 2001Inbred lines of mice derived from long-term growth selected lines: unique resources for mapping growth genesMamm Genome12678686CrossRefPubMedGoogle Scholar
  2. Cheverud, JM, Vaughn, TT, Pletscher, LS, Peripato, AC, Adams, ES,  et al. 2001Genetic architecture of adiposity in the cross of LG/J and SM/J inbred miceMamm Genome12312CrossRefPubMedGoogle Scholar
  3. Christians, JK, Bingham, V, Oliver, F, Heath, TT, Keightley, PD 2003Characterization of a QTL affecting skeletal size in miceMamm Genome14175183CrossRefPubMedGoogle Scholar
  4. Churchill, GA, Doerge, RW 1994Empirical threshold values for quantitative trait mappingGenetics138963971PubMedPubMedCentralGoogle Scholar
  5. Darvasi, A 1998Experimental strategies for the genetic dissection of complex traits in animal modelsNat Genet181924CrossRefPubMedGoogle Scholar
  6. Demant, P 2003Cancer susceptibility in the mouse: Genetics, biology and implications for human cancerNat Rev Genet4721734CrossRefPubMedGoogle Scholar
  7. Denny, P, Lord, CJ, Hill, NJ, Goy, JV, Levy, ER,  et al. 1997Mapping of the IDDM locus Idd3 to a 0.35-cM interval containing the interleukin-2 geneDiabetes46695700CrossRefPubMedGoogle Scholar
  8. Ensembl (2003) Ensembl Mouse Genome Server Database. URL: http://www.ensembl.org/Mus_musculus/ September 2003
  9. Fehr, C, Shirley, RL, Belknap, JK, Crabbe, JC, Buck, KJ 2002Congenic mapping of alcohol and pentobarbital withdrawal liability loci to a <1 centimorgan interval of murine chromosome 4: Identification of Mpdz as a candidate geneJ Neurosci2237303738CrossRefPubMedGoogle Scholar
  10. Flint, J, Mott, R 2001Finding the molecular basis of quantitative traits: Successes and pitfallsNat Rev Genet2437445CrossRefPubMedGoogle Scholar
  11. Glazier, AM, Nadeau, JH, Aitman, TJ 2002Finding genes that underlie complex traitsScience29823452349CrossRefPubMedGoogle Scholar
  12. Haley, CS, Knott, SA 1992A simple regression method for mapping quantitative trait loci in line crosses using flanking markersHeredity69315324CrossRefPubMedGoogle Scholar
  13. Iraqi, F, Clapcott, SJ, Kumari, P, Haley, CS, Kemp, SJ,  et al. 2000Fine mapping of trypanosomiasis resistance loci in murine advanced intercross linesMamm Genome11645648CrossRefPubMedGoogle Scholar
  14. Klein, RF, Carlos, AS, Vartanian, KA, Chambers, VK, Turner, RJ,  et al. 2001Confirmation and fine mapping of chromosomal regions influencing peak bone mass in miceJ Bone Miner Res1619531961CrossRefPubMedGoogle Scholar
  15. Knott, SA, Haley, CS 2000Multitrait least squares for quantitative trait loci detectionGenetics156899911PubMedPubMedCentralGoogle Scholar
  16. Legare, ME, Bartlett, FS, Frankel, WN 2000A major effect QTL determined by multiple genes in epileptic EL miceGenome Res104248PubMedPubMedCentralGoogle Scholar
  17. Liu, XJ, Oliver, F, Brown, SDM, Denny, P, Keightley, PD 2001High-resolution quantitative trait locus mapping for body weight in mice by recombinant progeny testingGenet Res77191197CrossRefPubMedGoogle Scholar
  18. Morris, KH, Ishikawa, A, Keightley, PD 1999Quantitative trait loci for growth traits in C57BL/6J×DBA/2J miceMamm Genome10225228CrossRefPubMedGoogle Scholar
  19. Podolin, PL, Denny, P, Armitage, N, Lord, CJ, Hill, NJ,  et al. 1998Localization of two insulin-dependent diabetes (Idd) genes to the Idd10 region on mouse Chromosome 3Mamm Genome9283286CrossRefPubMedGoogle Scholar
  20. Rozen, S, Skaletsky, HJ 2000Primer3 on the WWW for general users and for biologist programmersKrawet, SMisener, S eds. Bioinformatics Methods and Protocols: Methods in Molecular BiologyHumana PressTotowa, NJ365386(Code available at http://www.genome.wi.mit.edu/genome_software/other/primer3.html)Google Scholar
  21. SAS Institute1989SAS/STAT User’s Guide, Version 6, 4th, ed, Volume 2SAS Institute Inc.Cary, NCGoogle Scholar
  22. Shultz, KL, Donahue, LR, Bouxsein, ML, Baylink, DJ, Rosen, CJ,  et al. 2003Congenic strains of mice for verification and genetic decomposition of quantitative trait loci for femoral bone mineral densityJ Bone Miner Res18175185CrossRefPubMedGoogle Scholar
  23. Talbot, CJ, Radcliffe, RA, Fullerton, J, Hitzemann, R, Wehner, JM,  et al. 2003Fine scale mapping of a genetic locus for conditioned fearMamm Genome14223230CrossRefPubMedGoogle Scholar
  24. Vaughn, TT, Pletscher, LS, Peripato, A, King–Ellison, K, Adams, E,  et al. 1999Mapping quantitative trait loci for murine growth: a closer look at genetic architectureGenet Res74313322CrossRefPubMedGoogle Scholar
  25. Visscher, PM, Thompson, R, Haley, CS 1996Confidence intervals in QTL mapping by bootstrappingGenetics14310131020PubMedPubMedCentralGoogle Scholar
  26. Wang, XS, Le Roy, I, Nicodeme, E, Li, RH, Wagner, R,  et al. 2003Using advanced intercross line for high-resolution mapping of HDL cholesterol quantitative trait lociGenome Res1316541664CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institute of Cell, Animal and Population BiologyUniversity of Edinburgh, Ashworth Laboratories, King’s BuildingsEdinburghUK

Personalised recommendations