Stable isotope analysis of vegetation history and land use change at Laguna Santa Elena in southern Pacific Costa Rica

  • Matthew T. KerrEmail author
  • Sally P. Horn
  • Chad S. Lane
Original Article


Laguna Santa Elena (8.9290° N, 82.9257° W, 1055 m a.s.l.) is a small lake in the Diquís archaeological sub-region of southern Pacific Costa Rica. Previous analyses of pollen and charcoal in a sediment core from Santa Elena revealed a nearly 2,000 year history of vegetation change, maize cultivation and site occupation that is consistent with the archaeological record from the lake basin and surrounding area. Here we present the results of new loss-on-ignition, geochemical and bulk stable carbon (δ13C) and nitrogen (δ15N) isotope analyses of the Santa Elena sediments that supplement and refine the previous reconstruction. Like many lakes in Central America and the Caribbean, Laguna Santa Elena was a magnet for humans throughout its history. As a result, the lake experienced vegetation modification by humans and maize cultivation at varying intensities over a long duration. The Santa Elena sediments provide a record of palaeoenvironmental change during times of major culture change and increasing cultural complexity in the Diquís region, which occurred during intervals of broader changes driven by external forcing mechanisms, including the Terminal Classic Drought (TCD), the Little Ice Age (LIA) and the Spanish Conquest. Our high resolution lake sediment study from Santa Elena reveals details of these events at the local scale that are unobtainable by other means, including the timing of the initial intensification of maize cultivation at ca. 1,570 cal bp (ad 380) and two intervals of population decline coinciding with the TCD at ca. 1,085 cal bp (ad 865) and near the start of the LIA at ca. 683 cal bp (ad 1267).


Carbon Nitrogen Stable isotopes Costa Rica Archaeology Palaeoenvironments 



Core recovery, radiocarbon dating and previous pollen and charcoal analyses were funded by a grant from The A.W. Mellon Foundation to Sally Horn and Robert Sanford Jr., and by a STAR Fellowship from the U.S. Environmental Protection Agency awarded to Kevin Anchukaitis. A 2013 field visit and our new results reported here were supported by the University of Tennessee, the Center for Marine Science and College of Arts and Sciences at the University of North Carolina Wilmington, and NSF Grant #1660185 awarded to Sally Horn, Chad Lane, and Doug Gamble. We thank Maureen Sánchez for sharing her knowledge on the archaeology of the Santa Elena site and surrounding area, and Paul Lemieux and Sarah Bleakney for laboratory assistance.

Supplementary material

334_2019_755_MOESM1_ESM.xlsx (16 kb)
Supplementary material 1 (XLSX 16 kb)


  1. Anchukaitis KJ (2002) A 2000-year history of forest disturbance in southern Pacific Costa Rica: pollen, spore, and charcoal evidence from Laguna Santa Elena. MS Thesis, University of Tennessee KnoxvilleGoogle Scholar
  2. Anchukaitis KJ, Horn SP (2005) A 2000-year reconstruction of forest disturbance from southern Pacific Costa Rica. Palaeogeogr Palaeoclimatol Palaeoecol 221:35–54CrossRefGoogle Scholar
  3. Barrantes R (1993) Evolución en el trópico: los Amerindios de Costa Rica y Panamá. Editorial de la Universidad de Costa Rica, San JoséGoogle Scholar
  4. Barrantes R, Smouse PE, Mohrenweiser HW et al (1990) Microevolution in lower Central America: genetic characterization of the Chibcha-speaking groups of Costa Rica and Panama, and consensus taxonomy based on genetic and linguistic affinity. Am J Hum Genet 46:63–84Google Scholar
  5. Baudez CL, Borgnino N, Laligant S et al (1996) A ceramic sequence for the lower Diquís area, Costa Rica. In: Lange FW (ed) Paths to Central American prehistory. University Press of Colorado, Niwot, pp 79–92Google Scholar
  6. Behling H (2000) A 2860-year high-resolution pollen and charcoal record from the Cordillera de Talamanca in Panama: a history of human and volcanic forest disturbance. Holocene 10:387–393CrossRefGoogle Scholar
  7. Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244CrossRefGoogle Scholar
  8. Blaauw M (2019) Clam: classical age-depth modelling of cores from deposits. R package version 2.3.2. Accessed 23 Jan 2019
  9. Blaauw M, Christen JA (2019) Rbacon: age-depth modelling using Bayesian statistics. R package version 2.3.6. Accessed 23 Jan 2019
  10. Black DE, Abahazi MA, Thunell RC et al (2007) An 8-century tropical Atlantic SST record from the Cariaco Basin: baseline variability, twentieth-century warming, and Atlantic hurricane frequency. Paleoceanography 22:PA4204CrossRefGoogle Scholar
  11. Blanco A, Mora G (1994) Plantas silvestres y cultivadas segun la evidencia arqueobotanica en Costa Rica. Vínculos 20:53–77Google Scholar
  12. Bookman R, Driscoll CT, Effler SW, Engstrom DR (2010) Anthropogenic impacts recorded in recent sediments from Otisco Lake, New York, USA. J Paleolimnol 43:449–462CrossRefGoogle Scholar
  13. Brodie CR, Leng MJ, Casford JSL et al (2011) Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem Geol 282:67–83CrossRefGoogle Scholar
  14. Brodie LJ, Palumbo SD, Corrales F (2016) Early social complexity at Bolas, Costa Rica: first year southern Costa Rica archaeological project (SCRAP) results. Arqueología 22:409–418Google Scholar
  15. Brown RH (1999) Agronomic implications of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 473–507CrossRefGoogle Scholar
  16. Bush MB (2002) On the interpretation of fossil Poaceae pollen in the lowland humid tropics. Palaeogeogr Palaeoclimatol Palaeoecol 177:5–17CrossRefGoogle Scholar
  17. Clement RM, Horn SP (2001) Pre-Columbian land use history in Costa Rica: a 3000-year record of forest clearance, agriculture and fires from Laguna Zoncho. Holocene 11:419–426CrossRefGoogle Scholar
  18. Colinvaux P, De Oliveira PE, Moreno JE (1999) Amazon pollen manual and atlas. Hardwood Academic Publishers, AmsterdamGoogle Scholar
  19. Constenla A (1991) Las lenguas del Área Intermedia: introducción a su estudio areal. Editorial de la Universidad de Costa Rica, San JoséGoogle Scholar
  20. Corrales F (2000) An evaluation of long-term cultural change in southern Central America: the ceramic record of the Diquís archaeological subregion, southern Costa Rica. Dissertation, University of KansasGoogle Scholar
  21. Corrales F, Quintanilla I, Barrantes O (1988) Historia precolombina y de los siglos XVI y XVII del sureste de Costa Rica. Proyecto investigación y promoción de la cultura popular y tradicional del Pacifico sur OEA/MCJD. Ministerio de Cultura, Juventud y Deportes. Organización de los Estados Americanos, San JoséGoogle Scholar
  22. Dean WE Jr (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  23. Drolet RP (1984) Community life in a late phase agricultural village, southeastern Costa Rica. In: Lange FW (ed) Recent developments in Isthmian archaeology: advances in the prehistory of lower Central America (BAR International Series 212). Archaeopress, Oxford, pp 123–152Google Scholar
  24. Drolet RP (1988) The emergence and intensification of complex societies in Pacific southern Costa Rica. In: Lange FW (ed) Costa Rican art and archaeology: essays in honor of Frederick R. University of Colorado, Boulder, Mayer, pp 163–188Google Scholar
  25. Drolet RP (1992) The house and the territory: the organizational structure for chiefdom art in the Diquis subregion of greater Chiriqui. In: Lange FW (ed) Wealth and hierarchy in the Intermediate Area: a symposium at Dumbarton Oaks 10th and 11th October 1987. Dumbarton Oaks Research Library and Collection, Washington, DC, pp 207–241Google Scholar
  26. Dull RA (2007) Evidence for forest clearance, agriculture, and human-induced erosion in Precolumbian El Salvador. Ann Assoc Am Geogr 97:127–141CrossRefGoogle Scholar
  27. Dunnette PV, Higuera PE, McLauchlan KK et al (2014) Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain subalpine watershed. New Phytol 203:900–912CrossRefGoogle Scholar
  28. Enters D, Lücke A, Zolitschka B (2006) Effects of land-use change on deposition and composition of organic matter in Frickenhauser See, northern Bavaria, Germany. Sci Total Environ 369:178–187CrossRefGoogle Scholar
  29. Filippelli GM, Souch C, Horn SP et al (2010) The pre-Colombian footprint on terrestrial nutrient cycling in Costa Rica: insights from phosphorus in a lake sediment record. J Paleolimnol 43:843–856CrossRefGoogle Scholar
  30. Galinat WC (1980) The archaeological maize remains from Volcan, Panama—a comparative perspective. In: Linares OF, Ranere AJ (eds) Adaptive radiations in prehistoric Panama. (Peabody Museum Monographs 5). Harvard University, Cambridge, pp 175–180Google Scholar
  31. Goman M, Byrne R (1998) A 5000-year record of agriculture and tropical forest clearance in the Tuxtlas, Veracruz, Mexico. Holocene 8:83–89CrossRefGoogle Scholar
  32. Graham A (1987) Miocene communities and paleoenvironments of southern Costa Rica. Am J Bot 74:1501–1518CrossRefGoogle Scholar
  33. Haberland W (1984a) The Valle de General and Panamanian Chiriquí: temporal and regional differences. In: Skirboll E, Creamer W (eds) Inter-regional ties in Costa Rican prehistory: papers presented at a symposium at Carnegie Museum of Natural History, Pittsburgh, April 27, 1983 (BAR International Series 226). Archaeopress, Oxford, 261–276Google Scholar
  34. Haberland W (1984b) The archaeology of Greater Chiriqui. In: Lange FW, Stone DZ (eds) The archaeology of lower Central America. University of New Mexico Press, Albuquerque, pp 233–262Google Scholar
  35. Haberyan KA, Horn SP (2005) Diatom paleoecology of Laguna Zoncho, Costa Rica. J Paleolimnol 33:361–369CrossRefGoogle Scholar
  36. Hartshorn GS (1983) Plants. In: Janzen DH (ed) Costa Rican natural history. University of Chicago Press, Chicago, pp 118–350Google Scholar
  37. Hassan KM, Swinehart JB, Spalding RF (1997) Evidence for Holocene environmental change from C/N ratios, and δ13C and δ15N values in Swan Lake sediments, western Sand Hills, Nebraska. J Paleolimnol 18:121–130CrossRefGoogle Scholar
  38. Haug GH, Hughen KA, Sigman DM et al (2001) Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293:1304–1308CrossRefGoogle Scholar
  39. Hedges JI, Clark WA, Quay PD et al (1986) Compositions and fluxes of particulate organic material in the Amazon River. Limnol Oceanogr 31:717–738CrossRefGoogle Scholar
  40. Hodell DA, Brenner M, Curtis JH (2005) Terminal Classic Drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Q Sci Rev 24:1413–1427CrossRefGoogle Scholar
  41. Holmberg K (2009) Nature, material, culture, and the volcano: the archaeology of the Volcán Barú in highland Chiriquí, Panamá. Dissertation, Columbia UniversityGoogle Scholar
  42. Holmberg K (2016) The cultural nature of tephra: ‘problematic’ ecofacts and artifacts and the Barú volcano, Panamá. Q Int 394:133–151CrossRefGoogle Scholar
  43. Hoopes JW (1991) The Isthmian alternative: reconstructing patterns of social organization in formative Costa Rica. In: Fowler WR Jr (ed) The formation of complex society in southeastern Mesoamerica. CRC Press, Boca Raton, pp 171–192Google Scholar
  44. Hoopes JW (1996) Settlement, subsistence, and the origins of social complexity in Greater Chiriquí: a reappraisal of the Aguas Buenas tradition. In: Lange FW (ed) Paths to Central American prehistory. University Press of Colorado, Niwot, pp 15–47Google Scholar
  45. Horn SP (2006) Pre-Columbian maize agriculture in Costa Rica: pollen and other evidence from lake and swamp sediments. In: Staller J, Tykot R, Benz B (eds) Histories of maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Academic Press, Amsterdam, pp 368–376Google Scholar
  46. Horn SP, Haberyan KA (2016) Lakes of Costa Rica. In: Kappelle M (ed) Costa Rican ecosystems. University of Chicago Press, Chicago, pp 656–682CrossRefGoogle Scholar
  47. Horn SP, Sanford RL Jr (1992) Holocene fires in Costa Rica. Biotropica 24:354–361CrossRefGoogle Scholar
  48. Iltis HH (2000) Homeotic sexual translocations and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ Bot 54:7–42CrossRefGoogle Scholar
  49. Iltis HH, Benz BF (2000) Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua. Novon 10:382–390CrossRefGoogle Scholar
  50. Johanson EJ, Horn SP, Lane CS (2019) Pre-Columbian agriculture, fire, and Spanish contact: a 4200-year record from Laguna Los Mangos, Costa Rica. Holocene 29:1743–1757CrossRefGoogle Scholar
  51. Juggins S (2007) C2: software for ecological and palaeoecological data analysis and visualization, user guide version 1.5. University of Newcastle, Newcastle upon TyneGoogle Scholar
  52. Lane CS, Horn SP, Mora CI (2004) Stable carbon isotope ratios in lake and swamp sediments as a proxy for prehistoric forest clearance and crop cultivation in the Neotropics. J Paleolimnol 32:375–381CrossRefGoogle Scholar
  53. Lane CS, Mora CI, Horn SP et al (2008) Sensitivity of bulk sedimentary stable carbon isotopes to prehistoric forest clearance and maize agriculture. J Archaeol Sci 35:2119–2132CrossRefGoogle Scholar
  54. Lane CS, Horn SP, Taylor ZP et al (2009) Assessing the scale of prehistoric human impact in the Neotropics using stable carbon isotope analyses of lake sediments: a test case from Costa Rica. Lat Am Antiq 20:120–133CrossRefGoogle Scholar
  55. Lane CS, Horn SP, Mora CI et al (2011) Sedimentary stable carbon isotope evidence of late Quaternary vegetation and climate change in highland Costa Rica. J Paleolimnol 45:323–338CrossRefGoogle Scholar
  56. Lane CS, Clark JJ, Knudsen A et al (2013) Late-Holocene paleoenvironmental history of bioluminescent Laguna Grande, Puerto Rico. Palaeogeogr Palaeoclimatol Palaeoecol 369:99–113CrossRefGoogle Scholar
  57. Lane CS, Horn SP, Kerr MT (2014) Beyond the Mayan Lowlands: impacts of the Terminal Classic Drought in the Caribbean Antilles. Q Sci Rev 86:89–98CrossRefGoogle Scholar
  58. Lange FW (1992) The intermediate area: an introductory overview of wealth and hierarchy issues. In: Lange FW (ed) Wealth and hierarchy in the intermediate area: a symposium at Dumbarton Oaks 10th and 11th October 1987. Dumbarton Oaks Research Library and Collection, Washington, DC, pp 1–14Google Scholar
  59. Lange FW (1993) The conceptual structure in lower Central American studies: a Central American view. In: Graham MM (ed) Reinterpreting prehistory of Central America. University Press of Colorado, Niwot, pp 277–324Google Scholar
  60. Linares OF, Sheets PD (1980) Highland agricultural villages in the Volcan Baru region. In: Linares OF, Ranere AJ (eds) Adaptive radiations in prehistoric Panama. (Peabody Museum Monographs 5). Harvard University, Cambridge, pp 44–55Google Scholar
  61. Linares OF, Sheets PD, Rosenthal EJ (1975) Prehistoric agriculture in tropical highlands. Science 187:137–145CrossRefGoogle Scholar
  62. Manger WF (1992) Colonization on the southern frontier of Costa Rica: a historical-cultural landscape. Memphis State University, ThesisGoogle Scholar
  63. McLauchlan KK, Williams JJ, Craine JM, Jeffers ES (2013) Changes in global nitrogen cycling during the Holocene epoch. Nature 495:352–355CrossRefGoogle Scholar
  64. Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282:401–450CrossRefGoogle Scholar
  65. Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250CrossRefGoogle Scholar
  66. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900CrossRefGoogle Scholar
  67. Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  68. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2. Physical and geochemical methods. Kluwer, Dordrecht, pp 239–269CrossRefGoogle Scholar
  69. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567CrossRefGoogle Scholar
  70. Oldfield F, Wake R, Boyle J et al (2003) The late-Holocene history of Gormire Lake (NE England) and its catchment: a multiproxy reconstruction of past human impact. Holocene 13:677–690CrossRefGoogle Scholar
  71. Palumbo SD (2009) The development of complex society in the Volcán Barú region of western Panama. Dissertation, University of PittsburghGoogle Scholar
  72. Palumbo SD, Brodie L, Locascio WA et al (2013) Early social complexity in southern Costa Rica: new evidence from Bolas. Antiquity 87(337). Accessed 23 January 2019
  73. Pessenda LCR, Saia SEMG, Gouveia SEM et al (2010) Last millennium environmental changes and climate inferences in the Southeastern Atlantic forest, Brazil. An Acad Bras Ciênc 82:717–729CrossRefGoogle Scholar
  74. Peterson LC, Haug GH (2006) Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeogr Palaeoclimatol Palaeoecol 234:97–113CrossRefGoogle Scholar
  75. Quilter J, Blanco A (1995) Monumental architecture and social organization at the Rivas Site, Costa Rica. J Field Archaeol 22:203–221Google Scholar
  76. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed 23 January 2019
  77. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869-1,887CrossRefGoogle Scholar
  78. Rodgers JC III, Horn SP (1996) Modern pollen spectra from Costa Rica. Palaeogeogr Palaeoclimatol Palaeoecol 124:53–71CrossRefGoogle Scholar
  79. Sage RF, Wedin DA, Li M (1999) The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 313–373CrossRefGoogle Scholar
  80. Sánchez M (2013) Las sociedades de rango y distribución territorial en el Pacífico sur de Costa Rica. Revista de Arqueología Americana 31:59–80Google Scholar
  81. Sánchez M, Rojas P (2002) Asentamientos humanos antiguos en las tierras intermedias del Cantón de Coto Brus. Cuadernos de Antropología 12:87–106Google Scholar
  82. Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, San DiegoGoogle Scholar
  83. Sharp Z (2017) Principles of stable isotope geochemistry, 2nd edn.
  84. Sherrod DR, Vallance JW, Tapia A, McGeehin JP (2007) Volcán Barú—eruptive history and volcano-hazards assessment, open-file report 2007-1401. US Geological Survey, RestonGoogle Scholar
  85. Smalley J, Blake M (2003) Sweet beginnings: stalk sugar and the domestication of maize. Curr Anthropol 44:675–703CrossRefGoogle Scholar
  86. Smith CE (1980) Plant remains from the Chiriqui sites and ancient vegetational patterns. In: Linares OF, Ranere AJ (eds) Adaptive radiations in prehistoric Panama (Peabody Museum Monographs 5). Harvard University, Cambridge, pp 151–174Google Scholar
  87. Snarskis MJ (1981) The archaeology of Costa Rica. In: Benson EP (ed) Between continents/between seas: Precolumbian art of Costa Rica. Harry N Abrams, New York, pp 15–84Google Scholar
  88. Soto K, Gómez L (2002) Sitio arqueologico el Zoncho (CAT. U.C.R. N°168): una manifestación de los agricultores especializados en las Tierra Intermedias de San Vito, Cantón de Coto Brus, Puntarenas. Tesis de Licenciatura, Universidad de Costa RicaGoogle Scholar
  89. Szpak P (2014) Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front Plant Sci 5, Article 298:1–19Google Scholar
  90. Talbot MR (2001) Nitrogen isotopes in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2. Physical and geochemical methods. Kluwer, Dordrecht, pp 401–439CrossRefGoogle Scholar
  91. Talbot MR, Johannessen T (1992) A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett 110:23–37CrossRefGoogle Scholar
  92. Taylor ZP, Horn SP, Finkelstein DB (2013a) Pre-Hispanic agricultural decline prior to the Spanish Conquest in southern Central America. Q Sci Rev 73:196–200CrossRefGoogle Scholar
  93. Taylor ZP, Horn SP, Finkelstein DB (2013b) Maize pollen concentrations in Neotropical lake sediments as an indicator of the scale of prehistoric agriculture. Holocene 23:78–84CrossRefGoogle Scholar
  94. Taylor ZP, Horn SP, Finkelstein DB (2015) Assessing intra-basin spatial variability in geochemical and isotopic signatures in the sediments of a small Neotropical lake. J Paleolimnol 54:395–411CrossRefGoogle Scholar
  95. Tepper JH, Hyatt JA (2011) Holocene trophic state history of a subtropical blackwater lake, South Georgia, USA. J Paleolimnol 45:9–22CrossRefGoogle Scholar
  96. Torres IC, Inglett PW, Brenner M, Kenney WF, Reddy KR (2012) Stable isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status. J Paleolimnol 47:693–706CrossRefGoogle Scholar
  97. Tyson RV (1995) Sedimentary organic matter: organic facies and palynofacies. Chapman and Hall, LondonCrossRefGoogle Scholar
  98. Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  99. Wahl D, Schreiner T, Byrne R, Hansen R (2007) A paleoecological record from a Late Classic Maya reservoir in the North Petén. Lat Am Antiq 18:212–222CrossRefGoogle Scholar
  100. Whitlock C, Larsen C (2001) Charcoal as a fire proxy. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 75–97CrossRefGoogle Scholar
  101. Wu J, Porinchu DF, Horn SP (2017) A chironomid-based reconstruction of late-Holocene climate and environmental change for southern Pacific Costa Rica. Holocene 27:73–84CrossRefGoogle Scholar
  102. Wu J, Porinchu DF, Horn SP (2019) Late Holocene hydroclimate variability in Costa Rica: signature of the terminal classic drought and the Medieval Climate Anomaly in the northern tropical Americas. Quat Sci Rev 215:144–159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Matthew T. Kerr
    • 1
    Email author
  • Sally P. Horn
    • 1
  • Chad S. Lane
    • 2
  1. 1.Department of GeographyUniversity of Tennessee KnoxvilleKnoxvilleUSA
  2. 2.Department of Earth and Ocean SciencesUniversity of North Carolina WilmingtonWilmingtonUSA

Personalised recommendations