Vegetation History and Archaeobotany

, Volume 27, Issue 5, pp 737–751 | Cite as

Environmental and historical archaeology of the Galápagos islands: archaeobotany of Hacienda El Progreso, 1870–1920

  • Fernando Javier AstudilloEmail author
Original Article


The initial relationships between the first human colonizers and the native vegetation of Isla San Cristóbal, Galápagos, were studied by the analyses of wood charcoal, plant macro-remains, phytoliths and historical records. Archaeological and modern botanical samples were collected from four archaeological sites within the former farmland of the 19th century Hacienda El Progreso, a sugar plantation located in the moist highlands of the island. The archaeobotanical remains show the use of native timber, the introduction of crops and weeds, some aspects of local diet, and evidence of vegetation clearance. Ecological impact is shown by the changes to the native vegetation caused by human colonization of the island and the expansion of agricultural land for the plantation enterprise. This paper provides a synthesis of the archaeobotanical study at El Progreso which forms a baseline for future research in the Galápagos islands.


Charcoal Macroremains Sugar plantation Colonization Ecuador 



This research was partially funded by the Government of Ecuador/SENESCYT with a scholarship for doctoral studies to FA, the Social Sciences and Humanities Research Council of Canada (SSHRC Partnership Development Grant No. 890-2013-0013) and the Department of Archaeology of Simon Fraser University (SFU). The analysis was achieved in 2014, 2015, and 2016 in the laboratories of Archaeobotany at SFU and in the Terrestrial Ecology Laboratory at the Galápagos Science Centre (USFQ-UNC Chapel Hill). This study was conducted with research permits from the National Institute of Cultural Heritage of Ecuador (INPC) No 006-2014 and No 004-DR4-INPC-2015, and from the Galápagos National Park (PNG) No PC-93-14 and No PC-61-15. Export of soil samples and dried plant material was conducted with authorization No. 10; INPC’BC’EC”00705. I am grateful to Ross Jamieson, Catherine D’Andrea, Sarah Walshaw, Shannon Wood and Peter Locher at SFU; Peter Stahl at UVic; Carlos Mena, Juan Pablo Muñoz, Leandro Vaca and Luis Tasipanta at GSC; Florencio Delgado and Diego Quiroga at USFQ and to all the people of El Progreso, especially Paulina Cango and Eddie Becerra.

Supplementary material

334_2018_668_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1352 KB)


  1. Albert RM, Lavi O, Estroff L et al (1999) Mode of occupation of Tabun cave, Mt Carmel, Israel during the Mousterian period: a study of the sediments and phytoliths. J Archaeol Sci 26:1,249–1,260CrossRefGoogle Scholar
  2. Albert RM, Weiner S (2001) Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. In: Meunier JD, Colin F (eds) Phytoliths: applications in earth sciences and human history. Taylor & Francis, Lisse, pp 251–266Google Scholar
  3. Alexandre A, Meunier J-D, Mariotti A, Soubies F (1999) Late Holocene phytolith and carbon-isotope record from a latosol at Salitre, south-central Brazil. Quat Res 51:187–194CrossRefGoogle Scholar
  4. Anderson A, Stothert K, Martinsson-Wallin H et al (2016) Reconsidering Precolumbian human colonization in the Galápagos Islands, Republic of Ecuador. Lat Am Antiq 27:169–183CrossRefGoogle Scholar
  5. Astudillo FJ (2017) Environmental historical archaeology of the Galápagos Islands: paleoethnobotany of Hacienda El Progreso (1870–1904). Doctoral dissertation, Department of Archaeology, Simon Fraser UniversityGoogle Scholar
  6. Barboni D, Bremond L, Bonnefille R (2007) Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol 246:454–470CrossRefGoogle Scholar
  7. Becks F (2012) Pilot study in microbotanical plant residue analysis, Market Street Chinatown archaeology project. Historical Archaeology Laboratory, Stanford Archaeology Center, StanfordGoogle Scholar
  8. Bilbao M (1904) Los crímenes de Galápagos (Archipiélago de Colón) El pirata del Guayas. Asesinato de Valdizán; asesinato de Cobos y Reina. Impr. de “El Telégrafo”, GuayaquilGoogle Scholar
  9. Bognoly JA, Espinosa JM (1905) Las islas encantadas: ó, el archipiélago de Colón. Impr. y lit. del Comercio. Guayaquil, EcuadorGoogle Scholar
  10. Bungartz F, Herrera H, Jaramillo P et al (eds) (2009) Charles Darwin Foundation Galápagos species checklist (Lista de Especies de Galápagos de la Fundación Charles Darwin). Charles Darwin Foundation/Fundación Charles Darwin, Puerto AyoraGoogle Scholar
  11. Bush M, Colinvaux PA, Steinitz-Kannan M et al (2010) Forty years of paleoecology in the Galápagos. Galapagos Res 67:55–61Google Scholar
  12. Bush MB, Restrepo A, Collins AF (2014) Galápagos history, restoration, and a shifted baseline. Restor Ecol 22:296–298CrossRefGoogle Scholar
  13. California Academy of Sciences (1907) Expedition of the California Academy of Sciences to the Galapagos islands, 1905–1906. The Academy, San FranciscoGoogle Scholar
  14. Carbo LF (1894) El Ecuador en Chicago. [A.E. Chasmar y cia.], New YorkGoogle Scholar
  15. Castillo de Vargas B, Herrera C, Jarrín H, Ospina P (2005) Desde las islas encantadas: historias de vida de colonos en Galápagos. Corp. Editora Nacional [u.a.], QuitoGoogle Scholar
  16. Clark LG, Londoño X, Ruiz-Sanchez E (2015) Bamboo taxonomy and habitat. In: Liese W, Köhl M (eds) Bamboo: tropical forestry. Springer, Cham, pp 1–30Google Scholar
  17. Coffey EED, Froyd CA, Willis KJ (2010) When is an invasive not an invasive? Macrofossil evidence of doubtful native plant species in the Galápagos Islands. Ecology 92:805–812CrossRefGoogle Scholar
  18. Colinvaux PA (1972) Climate and the Galápagos islands. Nature 240:17–20CrossRefGoogle Scholar
  19. Colinvaux PA, Schofield EK (1976a) Historical ecology in the Galápagos Islands, vol 1, a Holocene pollen record from El Junco lake, Isla San Cristobal. J Ecol 64:989–1,012CrossRefGoogle Scholar
  20. Colinvaux PA, Schofield EK (1976b) Historical ecology in the Galápagos Islands., vol 2, a Holocene spore record from El Junco lake, Isla San Cristobal. J Ecol 64:1,013–1,028CrossRefGoogle Scholar
  21. Compañía “Guía del Ecuador” (1909) El Ecuador: guia comercial, agricola, e industrial de la Republica. E. Rodenas, GuayaquilGoogle Scholar
  22. Currie CK (2005) Garden archaeology. Council for British Archaeology, YorkGoogle Scholar
  23. De Berlanga T (1884) Letter to His Majesty … describing his voyage from Panamá to Puerto Viejo. In: Coleccion de documentos ineditos relativos al descubrimiento, conquista y organizacion de las antiguas posesiones Españolas de América y Oceania.Tomo XLI, Cuaderno II. Impr. de Manuel G. Hernandez, MadridGoogle Scholar
  24. Deagan KA (2008) Environmental archaeology and historical archaeology. In: Reitz EJ, Scudder SJ, Scarry CM (eds) Case studies in environmental archaeology. Springer, New York, pp 21–42CrossRefGoogle Scholar
  25. Dimbleby GW (1978) Plants and archaeology, 2d edn. John Baker, LondonGoogle Scholar
  26. Eckhardt RC (1972) Introduced plants and animals in the Galápagos Islands. Bioscience 22:585–590CrossRefGoogle Scholar
  27. Epler B (2013) Galapagos: a human history. FastPencil Inc, CampbellGoogle Scholar
  28. Evett RR, Dawson A, Bartolome JW (2012) Estimating vegetation reference conditions by combining historical source analysis and soil phytolith analysis at Pepperwood Preserve, northern California coast ranges, USA. Restor Ecol 21:464–473CrossRefGoogle Scholar
  29. Evett RR, Franco-Vizcaino E, Stephens SL (2007) Phytolith evidence for the absence of a prehistoric grass understory in a Jeffrey pine—mixed conifer forest in the Sierra San Pedro Mártir, Mexico. Can J For Res 37:306–317CrossRefGoogle Scholar
  30. Ezell K, Pearsall D, Zeidler J (2006) Root and tuber phytoliths and starch grains document manioc (Manihot esculenta) arrowroot (Maranta arundinacea) and llerén (Calathea sp.) at the Real Alto site Ecuador. Econ Bot 60:103–120CrossRefGoogle Scholar
  31. Fahmy AG (2008) Diversity of lobate phytoliths in grass leaves from the Sahel region, west tropical Africa: tribe Paniceae. Plant Syst Evol 270:1–23CrossRefGoogle Scholar
  32. Fernández Honaine M, Osterrieth ML, Zucol AF (2009) Plant communities and soil phytolith assemblages relationship in native grasslands from southeastern Buenos Aires province, Argentina. Catena 76:89–96CrossRefGoogle Scholar
  33. Fernández Honaine M, Zucol AF, Osterrieth ML (2006) Phytolith assemblages and systematic associations in grassland species of the south-eastern pampean plains, Argentina. Ann Bot 98:1,155–1,165CrossRefGoogle Scholar
  34. Figueiral I, Mosbrugger V (2000) A review of charcoal analysis as a tool for assessing Quaternary and Tertiary environments: achievements and limits. Palaeogeogr Palaeoclimatol Palaeoecol 164:397–407CrossRefGoogle Scholar
  35. Franz H (1980) Old soils and land surfaces on the Galápagos islands. GeoJournal 4:182–184CrossRefGoogle Scholar
  36. Froyd CA, Lee JA, Anderson AJ et al (2010) Historic fuel wood use in the Galápagos Islands: identification of charred remains. Veget Hist Archaeobot 19:207–217CrossRefGoogle Scholar
  37. Gale R, Cutler DF, Royal Botanic Gardens K (2000) Plants in archaeology: identification manual of vegetative plant materials used in Europe and the southern Mediterranean to c. 1500. Westbury and Royal Botanic Gardens, Kew, OtleyGoogle Scholar
  38. Gromme S, Mankinen EA, Prévot M (2010) Time-averaged paleomagnetic field at the equator: Complete data and results from the Galapagos Islands, Ecuador. Geochem Geophys Geosyst 11:Q11009CrossRefGoogle Scholar
  39. Guézou A, Chamorro S, Pozo P et al (2016) CDF Checklist of Galápagos introduced plants - FCD lista de especies de plantas introducidas de Galápagos. In: Charles Darwin Foundation Galapagos species checklist (Lista de especies de Galápagos de la Fundación Charles Darwin). Charles Darwin Foundation/Fundación Charles Darwin, Puerto AyoraGoogle Scholar
  40. Guézou A, Trueman M, Buddenhagen CE et al (2010) An extensive alien plant inventory from the inhabited areas of Galapagos. PLoS One 5:e10276. CrossRefGoogle Scholar
  41. Hardesty DL (2009) Historical archaeology and the environment: a North American perspective. In: Gaimster D, Majewski T (eds) International handbook of historical archaeology. Springer, New York, pp 67–75CrossRefGoogle Scholar
  42. Heyerdahl T, Skjølsvold A (1974) Archaeological evidence of pre-Spanish visits to the Galápagos Islands. Kraus Reprint Co., MillwoodGoogle Scholar
  43. Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. Published for the East-West Center by the University Press of Hawaii, HonoluluGoogle Scholar
  44. Horrocks M, Marra M, Baisden WT et al (2013) Pollen, phytoliths, arthropods and high-resolution 14C sampling from Rano Kau, Easter Island: evidence for late Quaternary environments, ant (Formicidae) distributions and human activity. J Paleolimnol 50:417–432CrossRefGoogle Scholar
  45. Horrocks M, Smith IWG, Nichol SL, Wallace R (2008) Sediment, soil and plant microfossil analysis of Maori gardens at Anaura Bay, eastern North Island, New Zealand: comparison with descriptions made in 1769 by Captain Cook’s expedition. J Archaeol Sci 35:2,446–2,464CrossRefGoogle Scholar
  46. Idrovo H (2005) Galápagos: footsteps in paradise. Libri Mundi, QuitoGoogle Scholar
  47. Iriarte J, Paz EA (2009) Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quat Int 193:99–123CrossRefGoogle Scholar
  48. Iriarte J, Holst I, Marozzi O et al (2004) Evidence for cultivar adoption and emerging complexity during the mid-Holocene in the La Plata basin. Nature 432:614–617CrossRefGoogle Scholar
  49. Jäger H (2015) Biology and impacts of Pacific island invasive species. 11: Cinchona pubescens (Red quinine tree) (Rubiaceae). Pac Sci 69:133–153CrossRefGoogle Scholar
  50. Jäger H, Alencastro MJ, Kaupenjohann M, Kowarik I (2013) Ecosystem changes in Galápagos highlands by the invasive tree Cinchona pubescens. Plant Soil 371:629–640CrossRefGoogle Scholar
  51. Jaramillo P, Guézou A (2012) Guía rápida de Semillas de las Islas Galápagos. Versión 1. Fundación Charles Darwin & Mediterranean Institute of Advanced Studies, Puerto AyoraGoogle Scholar
  52. Jaramillo Díaz P, Guézou A (2010) List of all known species from the Galapagos Islands (Lista de todas las especies conocidas de las Islas Galápagos). In: Bungartz F, Herrera H, Jaramillo P (eds) List of all known species from the Galapagos Islands (Lista de todas las especies conocidas de las Islas Galápagos). Online repository of the Charles Darwin Foundation/Fundación Charles Darwin, Puerto Ayora. Accessed 18 July 2017
  53. Jaramillo Díaz P, Guézou A, Mauchamp A, Tye A (2014) CDF Checklist of Galapagos flowering plants (FCD Lista de especies de plantas con flores de Galápagos). In: Charles Darwin Foundation Galapagos species checklist (Lista de especies de Galápagos de la Fundación Charles Darwin). Charles Darwin Foundation/Fundación Charles Darwin, Puerto AyoraGoogle Scholar
  54. Jones RL, Beavers AH (1963) Some mineralogical and chemical properties of plant opal. Soil Sci 96:375–379CrossRefGoogle Scholar
  55. Jørgensen PM, Léon-Yánez S, Missouri Botanical Garden (1999) Catalogue of the vascular plants of Ecuador = Catálogo de las plantas vasculares del Ecuador. Missouri Botanical Garden Press, St. LouisGoogle Scholar
  56. Kerns BK, Moore MM, Hart SC (2001) Estimating forest-grassland dynamics using soil phytolith assemblages and δ13C of soil organic matter. Ecoscience 8:478–488CrossRefGoogle Scholar
  57. Korstanje MA, Babot MP (2007) Microfossils characterization from south Andean economic plants. In: Madella M, Zurro D (eds) Plants, people and places: recent studies in phytolith analysis. Oxbow, Oxford, pp 41–72Google Scholar
  58. Korstanje MA, Cuenya P (2010) Ancient agriculture and domestic activities: a contextual approach studying silica phytoliths and other microfossils in soils. Environ Archaeol 15:43–63CrossRefGoogle Scholar
  59. Landon DB (2005) Zooarchaeology and historical archaeology: progress and prospects. J Archaeol Method Theory 12:1–36CrossRefGoogle Scholar
  60. Latorre O (1991) Manuel J. Cobos. Emperador de Galápagos. Fundación Charles Darwin para las Islas Galápagos, QuitoGoogle Scholar
  61. Latorre O (1999) El Hombre en las islas encantadas. La historia humana de Galápagos. Fundacyt, QuitoGoogle Scholar
  62. Latorre O (2002) Manuel J. Cobos: Su Vida y Su Obra. Agencia Española de Cooperación Internacional, QuitoGoogle Scholar
  63. Latorre O (2011) Historia humana de Galápagos. Nuevas investigaciones. Academia Nacional de Historia, QuitoGoogle Scholar
  64. Latorre O, Netherly P, Dickinson de Salomón J, Cummins K (1990) The curse of the giant tortoise: tragedies, mysteries and crimes in the Galápagos Islands. Libri Mundi, QuitoGoogle Scholar
  65. LaVainillaFilms (2016) Historical ecology and archaeology of the Galápagos Islands. Accessed 27 Oct 2017
  66. Lee J (2006) Archaeological charcoal of the Galápagos Islands. A species analysis of charcoal remains from historic campsites on Santiago and Santa Cruz Islands. MSc. Dissertation, Oxford UniversityGoogle Scholar
  67. Leney L, Casteel RW (1975) Simplified procedure for examining charcoal specimens for identification. J Archaeol Sci 2:153–159CrossRefGoogle Scholar
  68. León-Yánez S, Valencia R, Pitman N et al (eds) (2011) Libro rojo de las plantas endémicas del Ecuador. Herbario QCA, Pontificia Universidad Católica del Ecuador, QuitoGoogle Scholar
  69. Liese W, Köhl M (eds) (2015) Bamboo: tropical forestry. Springer, ChamGoogle Scholar
  70. Liese W, Welling J, Tang TKH (2015) Utilization of bamboo. In: Liese W, Köhl M (eds) Bamboo: tropical forestry. Springer, Cham, pp 299–346Google Scholar
  71. Madella M, Alexandre A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot 96:253–260CrossRefGoogle Scholar
  72. Malek A-A, Fondation des parcs et jardins de France (2013) Sourcebook for garden archaeology. Peter Lang, BernCrossRefGoogle Scholar
  73. Mann A (1909) Yachting on the Pacific: together with notes on travel in Peru, and an account of the peoples and products of Ecuador. Duckworth, LondonGoogle Scholar
  74. Martínez NG (1915) Impresiones de un viaje. Talleres de policía nacional, QuitoGoogle Scholar
  75. McBirney AR, Williams H (1969) Geology and petrology of the Galápagos Islands. Geological Society of America, BoulderCrossRefGoogle Scholar
  76. McMullen CK (1999) Flowering plants of the Galápagos. Cornell University Press, IthacaGoogle Scholar
  77. Mercader J, Astudillo F, Barkworth M et al (2010) Poaceae phytoliths from the Niassa Rift, Mozambique. J Archaeol Sci 37:1,953–1,967CrossRefGoogle Scholar
  78. Mercader J, Bennett T, Esselmont C et al (2011) Soil phytoliths from miombo woodlands in Mozambique. Quat Res 75:138–150CrossRefGoogle Scholar
  79. Morcote-Ríos G, Giraldo-Cañas D, Raz L (2015) Catálogo ilustrado de fitolitos contemporáneos con énfasis arqueológico y paleoecológico. 1: Gramíneas Amazónicas (Catalogue of contemporary phytoliths for archaeology and paleoecology. 1: Amazonian grasses). Universidad Nacional de Colombia, BogotáGoogle Scholar
  80. Morris LR, West NE, Baker FA et al (2009) Developing an approach for using the soil phytolith record to infer vegetation and disturbance regime changes over the past 200 years. Quat Int 193:90–98CrossRefGoogle Scholar
  81. Mrozowski SA (2006) Environments of history: biological dimensions of historical archaeology. In: Hall M, Silliman SW (eds) Historical archaeology. Blackwell, Malden, pp 23–41Google Scholar
  82. Mrozowski SA (2010) New and forgotten paradigms: the environment and economics in historical archaeology. Hist Archaeol 44:117–127CrossRefGoogle Scholar
  83. Orser CE (1996) Can the subaltern speak? In: Orser JR, Charles E (eds) A historical archaeology of the modern world. Springer, New York, pp 159–182CrossRefGoogle Scholar
  84. Pearsall DM (2000) Paleoethnobotany: a handbook of procedures. Academic Press, San DiegoGoogle Scholar
  85. Pearsall DM, Chandler-Ezell K, Chandler-Ezell A (2003) Identifying maize in neotropical sediments and soils using cob phytoliths. J Archaeol Sci 30:611–627CrossRefGoogle Scholar
  86. Perry L, Dickau R, Zarrillo S et al (2007) Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986–988CrossRefGoogle Scholar
  87. Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, LanhamGoogle Scholar
  88. Piperno DR (2009) Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quat Int 193:146–159CrossRefGoogle Scholar
  89. Piperno DR, Pearsall DM (1998) The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithsonian Institution Press, Washington, DCCrossRefGoogle Scholar
  90. Restrepo A, Colinvaux P, Bush M et al (2012) Impacts of climate variability and human colonization on the vegetation of the Galápagos Islands. Ecology 93:1853–1866. CrossRefGoogle Scholar
  91. Schofield EK (1973) Galápagos flora: the threat of introduced plants. Biol Conserv 5:48–51CrossRefGoogle Scholar
  92. Seiter JI, Worthington MJ (2013) Wood and charcoal specimen analysis for the Market Street Chinatown archaeology project. (MSCAP Technical Report 6) (Oxford Tree-Ring Laboratory Report 2013/08), Stanford CTGoogle Scholar
  93. Simkin T (1984) Geology of Galápagos. Biol J Linn Soc 21:61–75CrossRefGoogle Scholar
  94. Smith CW, Betrán J, Runge ECA (2004) Corn: origin, history, technology, and production. Wiley, HobokenGoogle Scholar
  95. Stewart A (1911) A botanical survey of the Galápagos Islands. In: Proceedings of the California Academy of Sciences, San FranciscoGoogle Scholar
  96. Strömberg CAE, Di Stilio VS, Song Z (2016) Functions of phytoliths in vascular plants: an evolutionary perspective. Funct Ecol 30:1,286–1,297CrossRefGoogle Scholar
  97. Thorn VC (2004) Phytolith evidence for C4-dominated grassland since the early Holocene at Long Pocket, northeast Queensland, Australia. Quat Res 61:168–180CrossRefGoogle Scholar
  98. Trigg H, Leasure A (2007) Cider, wheat, maize, and firewood: paleoethnobotany at Sylvester Manor. Northeast Hist Archaeol 36:113–126CrossRefGoogle Scholar
  99. Van der Knaap W, Van Leeuwen JF, Froyd CA, Willis KJ (2012) Detecting the provenance of Galápagos non-native pollen: the role of humans and air currents as transport mechanisms. Holocene 22:1,373–1,383CrossRefGoogle Scholar
  100. Van Leeuwen JFN, Froyd CA, Van der Knaap WO et al (2008) Fossil pollen as a guide to conservation in the Galápagos. Science 322:1,206–1,206CrossRefGoogle Scholar
  101. Vargas JM (1986) Fray Tomas de Berlanga y el descubrimiento de las islas Galápagos. In: Boletín de la Academia Nacional de Historia. Academia Nacional de Historia, Quito, pp 37–59Google Scholar
  102. Wheeler EA, Baas P, Gasson PE (1989) IAWA list of microscopic features for hardwood identification. IAWA Bulletin n s 10:219–332CrossRefGoogle Scholar
  103. Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  104. Wiggins IIL, Porter DM, Anderson EF (1971) Flora of the Galápagos islands. Stanford University Press, Palo AltoGoogle Scholar
  105. Zhao Z, Pearsall DM (1998) Experiments for improving phytolith extraction from soils. J Archaeol Sci 25:587–598CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ArchaeologySimon Fraser UniversityBurnabyCanada

Personalised recommendations