The Exchange-Driven Growth Model: Basic Properties and Longtime Behavior

  • André SchlichtingEmail author


The exchange-driven growth model describes a process in which pairs of clusters interact through the exchange of single monomers. The rate of exchange is given by an interaction kernel K which depends on the size of the two interacting clusters. Well-posedness of the model is established for kernels growing at most linearly and arbitrary initial data. The longtime behavior is established under a detailed balance condition on the kernel. The total mass density \(\varrho \), determined by the initial data, acts as an order parameter, in which the system shows a phase transition. There is a critical value \(\varrho _c\in (0,\infty ]\) characterized by the rate kernel. For \(\varrho \le \varrho _c\), there exists a unique equilibrium state \(\omega ^\varrho \) and the solution converges strongly to \(\omega ^\varrho \). If \(\varrho > \varrho _c\), the solution converges only weakly to \(\omega ^{\varrho _c}\). In particular, the excess \(\varrho - \varrho _c\) gets lost due to the formation of larger and larger clusters. In this regard, the model behaves similarly to the Becker–Döring equation. The main ingredient for the longtime behavior is the free energy acting as Lyapunov function for the evolution. It is also the driving functional for a gradient flow structure of the system under the detailed balance condition.


Convergence to equilibrium Exchange-driven growth Entropy method Mean-field equation Zero-range process 

Mathematics Subject Classification

Primary 34A35 Secondary 34G20 37B25 37D35 82C05 82C26 



The author enjoyed fruitful discussions with Stefan Grosskinsky on the derivation of the system as mean-field limit as well as with Stefan Luckhaus, Barbara Niethammer, and Juan Velázquez on the Becker–Döring system and related topics. The author thanks Emre Esenturk for bringing many references to his attention. Moreover, the author is incredibly grateful for the very constructive and detailed referee reports pointing out missing steps and misprints in an earlier version. The author acknowledges support by the Department of Mathematics I at RWTH Aachen University, where part of this work originates.


  1. Ball, J.M., Carr, J.: Asymptotic behaviour of solutions to the Becker–Döring equations for arbitrary initial data. Proc. R. Soc. Edinb. Sect. A Math. 108(1–2), 109–116 (1988)CrossRefGoogle Scholar
  2. Ball, J.M., Carr, J., Penrose, O.: The Becker–Döring cluster equations: basic properties and asymptotic behaviour of solutions. Commun. Math. Phys. 104(4), 657–692 (1986)CrossRefGoogle Scholar
  3. Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. der Physik 24, 719–752 (1935)CrossRefGoogle Scholar
  4. Beltrán, J., Jara, M., Landim, C.: A martingale problem for an absorbed diffusion: the nucleation phase of condensing zero range processes. Probab. Theory Relat. Fields 169(3–4), 1169–1220 (2017)MathSciNetCrossRefGoogle Scholar
  5. Ben-Naim, E., Krapivsky, P.L.: Exchange-driven growth. Phys. Rev. E 68(3), 031104 (2003)CrossRefGoogle Scholar
  6. Cañizo, J.: The lemma of de la Valleé-Poussin. Unpublished note (2006)Google Scholar
  7. Cañizo, J.: Asymptotic behaviour of solutions to the generalized Becker–Döring equations for general initial data. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2064), 3731–3745 (2005)MathSciNetCrossRefGoogle Scholar
  8. Cañizo, J., Einav, A., Lods, B.: Trend to equilibrium for the Becker–Döring equations: an analogue of Cercignani’s conjecture. Anal. PDE 10(7), 1663–1708 (2017)MathSciNetCrossRefGoogle Scholar
  9. Cao, J., Chleboun, P., Grosskinsky, S.: Dynamics of condensation in the totally asymmetric inclusion process. J. Stat. Phys. 155(3), 523–543 (2014)MathSciNetCrossRefGoogle Scholar
  10. Chau, Y.-X., Connaughton, C., Grosskinsky, S.: Explosive condensation in symmetric mass transport models. J. Stat. Mech. Theory Exp. 2015(11), P11031 (2015)CrossRefGoogle Scholar
  11. Cocozza-Thivent, C.: Processus des misanthropes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 70(4), 509–523 (1985)MathSciNetCrossRefGoogle Scholar
  12. Conlon, J.G., Schlichting, A.: A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discret. Contin. Dyn. Syst. A 39(4), 1821–1889 (2019)CrossRefGoogle Scholar
  13. Dellacherie, C., Meyer, P.: Probabilities and Potential. Number Part 1 in North-Holland Mathematics Studies. Elsevier Science & Technology Books (1978)Google Scholar
  14. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Comparative Pathobiology—Studies in the Postmodern Theory of Education. Oxford University Press, Oxford (1988)Google Scholar
  15. Erbar, M., Fathi, M., Laschos, V., Schlichting, A.: Gradient flow structure for McKean–Vlasov equations on discrete spaces. Discret. Contin. Dyn. Syst. 36(12), 6799–6833 (2016)MathSciNetCrossRefGoogle Scholar
  16. Esenturk, E., Velazquez, J.: Large time behavior of exchange-driven growth. arXiv: 1904.11804 (2019)
  17. Esenturk, E.: Mathematical theory of exchange-driven growth. Nonlinearity 31(7), 3460–3483 (2018)MathSciNetCrossRefGoogle Scholar
  18. Godrèche, C.: Dynamics of condensation in zero-range processes. J. Phys. A Math. Gen. 36(23), 6313–6328 (2003)MathSciNetCrossRefGoogle Scholar
  19. Godrèche, C., Drouffe, J.-M.: Coarsening dynamics of zero-range processes. J. Phys. A Math. Theor. 50(1), 015005 (2017)MathSciNetCrossRefGoogle Scholar
  20. Grosskinsky, S., Jatuviriyapornchai, W.: Derivation of mean-field equations for stochastic particle systems. Stoch. Process. Their Appl. 129, 1455–1475 (2019) MathSciNetCrossRefGoogle Scholar
  21. Grosskinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113, 389 (2003)MathSciNetCrossRefGoogle Scholar
  22. Herrmann, M., Naldzhieva, M., Niethammer, B.: On a thermodynamically consistent modification of the Becker–Döring equations. Phys. D Nonlinear Phenom. 222(1–2), 116–130 (2006)CrossRefGoogle Scholar
  23. Hidy, G.M., Brock, J.R.: Topics in Current Aerosol Research. In: Top. Curr. Aerosol Res., vol. 3 (1972)Google Scholar
  24. Ispolatov, S., Krapivsky, P., Redner, S.: Wealth distributions in asset exchange models. Eur. Phys. J. B 2(2), 267–276 (1998)CrossRefGoogle Scholar
  25. Krapivsky, P.L., Redner, S., Ben-Naim, E.: A Kinetic View of Statistical Physics. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  26. Laurençot, P., Mischler, S.: From the Becker–Döring to the Lifshitz–Slyozov–Wagner equations. J. Stat. Phys. 106(5/6), 957–991 (2002)CrossRefGoogle Scholar
  27. Leyvraz, F., Redner, S.: Scaling theory for migration-driven aggregate growth. Phys. Rev. Lett. 88(6), 068301 (2002)CrossRefGoogle Scholar
  28. Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19(1), 35–50 (1961)CrossRefGoogle Scholar
  29. Lin, Z., Ke, J.: Kinetics of a migration-driven aggregation process with birth and death. Phys. Rev. E 67(3), 031103 (2003)CrossRefGoogle Scholar
  30. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)MathSciNetCrossRefGoogle Scholar
  31. Mielke, A.: A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329 (2011)MathSciNetCrossRefGoogle Scholar
  32. Niethammer, B.: On the evolution of large clusters in the Becker–Döring model. J. Nonlinear Sci. 13(1), 115–155 (2003)MathSciNetCrossRefGoogle Scholar
  33. Penrose, O.: The Becker–Döring equations at large times and their connection with the LSW theory of coarsening. J. Stat. Phys. 89, 305–320 (1997)CrossRefGoogle Scholar
  34. Rafferty, T., Chleboun, P., Grosskinsky, S.: Monotonicity and condensation in homogeneous stochastic particle systems. Ann. l’Institut Henri Poincaré Probab. Stat. 54(2), 790–818 (2018)MathSciNetCrossRefGoogle Scholar
  35. Schlichting, A.: Macroscopic limit of the Becker–Döring equation via gradient flows. ESAIM Control Optim. Calc. Var. 25, 22 (2018)CrossRefGoogle Scholar
  36. Slemrod, M.: Trend to equilibrium in the Becker–Doring cluster equations. Nonlinearity 2(1), 429–443 (1989)MathSciNetCrossRefGoogle Scholar
  37. Velázquez, J.J.: The Becker–Döring equations and the Lifshitz–SIyozov theory of coarsening. J. Stat. Phys. 92(1–2), 195–236 (1998)CrossRefGoogle Scholar
  38. Waclaw, B., Evans, M.R.: Explosive condensation in a mass transport model. Phys. Rev. Lett. 108(7), 070601 (2012)CrossRefGoogle Scholar
  39. Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochem. 65(7–8), 581–591 (1961)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany

Personalised recommendations