Advertisement

Identifying Influential Nodes in a Network Model of Epilepsy

  • Joseph Emerson
  • Amber Afelin
  • Viesulas Sliupas
  • Christian G. FinkEmail author
Article
  • 19 Downloads

Abstract

A significant proportion of individuals with epilepsy suffer from intractable forms of the disease. Current evidence suggests that pathological brain connectivity could be a major contributor to the propagation of focal seizures, constituting a possible cause for some forms of intractable epilepsy. Currently, however, the precise network structures that underpin epileptic brain connectivity are poorly understood. In this study, we use a computational model to simulate focal seizure spread in the macaque cortical connectome. We then use the results to propose a novel network centrality measure (called “Ictogenic Centrality”) that accurately identifies which nodes are most effective in propagating seizures. In the framework presented, ictogenic centrality outperforms other standard centrality measures in correctly identifying ictogenic nodes, exhibiting high accuracy (0.947), specificity (0.939), and sensitivity (0.964). Ictogenic centrality is degree based and relies on only a single free parameter, making it useful and efficient to compute for large networks. Our results suggest that baseline brain connectivity may predispose the temporal and frontal lobes toward ictogenicity even in the absence of any overtly pathological network reorganization.

Keywords

Epilepsy Seizure Connectome Centrality 

Mathematics Subject Classification

92B20 92B25 05C82 

Notes

Acknowledgements

Special thanks to Bill Stacey and Steve Gliske for their helpful comments on this paper.

Funding

This work was supported by National Institutes of Health [R01-NS094399], the National Science Foundation [1560061], and the Ohio Wesleyan Summer Science Research Program.

References

  1. Bakker, R., Wachtler, T., Diesmann, M.: Cocomac 2.0 and the future of tract-tracing databases. Front. Neuroinform. 6, 30 (2012)Google Scholar
  2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetzbMATHGoogle Scholar
  3. Bartolomei, F., Lagarde, S., Wendling, F., McGonigal, A., Jirsa, V., Guye, M., Bénar, C.: Defining epileptogenic networks: contribution of seeg and signal analysis. Epilepsia 58(7), 1131–1147 (2017)Google Scholar
  4. Benjamin, O., Fitzgerald, T.H.B., Ashwin, P., Tsaneva-Atanasova, K., Chowdhury, F., Richardson, M.P., Terry, J.R.: A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy. J. Math. Neurosci. 2(1), 1 (2012)MathSciNetzbMATHGoogle Scholar
  5. Bergey, G.K., Morrell, M.J., Mizrahi, E.M., Goldman, A., King-Stephens, D., Nair, D., Srinivasan, S., Jobst, B., Gross, R.E., Shields, D.C., et al.: Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 84(8), 810–817 (2015)Google Scholar
  6. Bernhardt, B.C., Bonilha, L., Gross, D.W.: Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy Behav. 50, 162–170 (2015)Google Scholar
  7. Bonilha, L., Nesland, T., Martz, G.U., Joseph, J.E., Spampinato, M.V., Edwards, J.C., Tabesh, A.: Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures. J. Neurol. Neurosurg. Psychiatry 89(9), 903–909 (2012)Google Scholar
  8. Bonilha, L., Jensen, J.H., Baker, N., Breedlove, J., Nesland, T., Lin, J.J., Drane, D.L., Saindane, A.M., Binder, J.R., Kuzniecky, R.I.: The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy. Neurology 84(18), 1846–1853 (2015)Google Scholar
  9. Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., Robinson, P.A.: A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex 16(9), 1296–1313 (2005)Google Scholar
  10. Buckmaster, P.S., Zhang, G.F., Yamawaki, R.: Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J. Neurosci. 22(15), 6650–6658 (2002)Google Scholar
  11. Chen, N., Liu, C., Yan, N., Wei, H., Zhang, J., Ge, Y., Meng, F.: A macaque model of mesial temporal lobe epilepsy induced by unilateral intrahippocampal injection of kainic acid. PLoS ONE 8(8), e72336 (2013)Google Scholar
  12. Chen, N., Gao, Y., Yan, N., Liu, C., Zhang, J.-G., Xing, W.-M., Kong, D.-M., Meng, F.-G.: High-frequency stimulation of the hippocampus protects against seizure activity and hippocampal neuronal apoptosis induced by kainic acid administration in macaques. Neuroscience 256, 370–378 (2014)Google Scholar
  13. Chen, Y.-C., Zhu, G.-Y., Wang, X., Shi, L., Jiang, Y., Zhang, X., Zhang, J.-G.: Deep brain stimulation of the anterior nucleus of the thalamus reverses the gene expression of cytokines and their receptors as well as neuronal degeneration in epileptic rats. Brain Res. 1657, 304–311 (2017)Google Scholar
  14. Cossu, M., Cardinale, F., Castana, L., Citterio, A., Francione, S., Tassi, L., Benabid, A.L., Lo Russo, G.: Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery 57(4), 706–718 (2005)Google Scholar
  15. Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P., Bullmore, E.T.: The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137(8), 2382–2395 (2014)Google Scholar
  16. Crunelli, V., Leresche, N.: Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3(5), 371 (2002)Google Scholar
  17. Da Silva, F.L., Blanes, W., Kalitzin, S.N., Parra, J., Suffczynski, P., Velis, D.N.: Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(12), 72–83 (2003)Google Scholar
  18. de Solla Price, D.: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27(5), 292–306 (1976)Google Scholar
  19. Deco, G., Jirsa, V.K., McIntosh, A.R., Sporns, O., Kotter, R.: Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. USA 106, 10302–10307 (2009)Google Scholar
  20. Elsharkawy, A.E., Behne, F., Oppel, F., Pannek, H., Schulz, R., Hoppe, M., Pahs, G., Gyimesi, C., Nayel, M., Issa, A., et al.: Long-term outcome of extratemporal epilepsy surgery among 154 adult patients. J. Neurosurg. 108(4), 676–686 (2008)Google Scholar
  21. Engel Jr., J., Wiebe, S., French, J., Sperling, M., Williamson, P., Spencer, D., Gumnit, R., Zahn, C., Westbrook, E., Enos, B.: Practice parameter: temporal lobe and localized neocortical resections for epilepsy. Epilepsia 44(6), 741–751 (2003)Google Scholar
  22. Englot, D.J.: A modern epilepsy surgery treatment algorithm: Incorporating traditional and emerging technologies. Epilepsy Behav. 80, 68–74 (2018)Google Scholar
  23. Englot, D.J., Birk, H., Chang, E.F.: Seizure outcomes in nonresective epilepsy surgery: an update. Neurosurg. Rev. 40, 181–194 (2017)Google Scholar
  24. Fisher, R., Salanova, V., Witt, T., Worth, R., Henry, T., Gross, R., Oommen, K., Osorio, I., Nazzaro, J., Labar, D., et al.: Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5), 899–908 (2010)Google Scholar
  25. Frässle, S., Lomakina, E.I., Kasper, L., Manjaly, Z.M., Leff, A., Pruessmann, K.P., Buhmann, J.M., Stephan, K.E.: A generative model of whole-brain effective connectivity. NeuroImage 179, 505–529 (2018)Google Scholar
  26. Ghosh, A., Rho, Y., McIntosh, A.R., Kötter, R., Jirsa, V.K.: Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Computat. Biol. 4(10), e1000196 (2008)MathSciNetGoogle Scholar
  27. Goodfellow, M., Rummel, C., Abela, E., Richardson, M.P., Schindler, K., Terry, J.R.: Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep. 6, 29215 (2016)Google Scholar
  28. Goulas, A., Bastiani, M., Bezgin, G., Uylings, H.B.M., Roebroeck, A., Stiers, P.: Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput. Biol. 10(3), e1003529 (2014)Google Scholar
  29. Hindmarsh, J., Cornelius, P.: The development of the Hindmarsh–Rose model for bursting. In: Coombes, S., Bressloff, P.C. (eds.) Bursting: The Genesis of Rhythm in the Nervous System, pp. 3–18. World Scientific (2005)Google Scholar
  30. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221(1222), 87–102 (1984)Google Scholar
  31. Hutchings, F., Han, C.E., Keller, S.S., Weber, B., Taylor, P.N., Kaiser, M.: Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations. PLoS Comput. Biol. 11(12), e1004642 (2015)Google Scholar
  32. Hwang, D.-U., Chavez, M., Amann, A., Boccaletti, S.: Synchronization in complex networks with age ordering. Phys. Rev. Lett. 94(13), 138701 (2005)Google Scholar
  33. Ji, G.-J., Zhang, Z., Qiang, X., Zang, Y.-F., Liao, W., Guangming, L.: Generalized tonic-clonic seizures: aberrant interhemispheric functional and anatomical connectivity. Radiology 271(3), 839–847 (2014)Google Scholar
  34. Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I., Bernard, C.: On the nature of seizure dynamics. Brain 137(8), 2210–2230 (2014)Google Scholar
  35. Jirsa, V.K., Proix, T., Perdikis, D., Woodman, M.M., Wang, H., Gonzalez-Martinez, J., Bernard, C., Bénar, C., Guye, M., Chauvel, P., et al.: The virtual epileptic patient: individualized whole-brain models of epilepsy spread. Neuroimage 145, 377–388 (2017)Google Scholar
  36. Kaiser, M., Hilgetag, C.C.: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2(7), e95 (2006)Google Scholar
  37. Kale, P., Zalesky, A., Gollo, L.L.: Estimating the impact of structural directionality: how reliable are undirected connectomes? Netw. Neurosci. 2(2), 1–51 (2018)Google Scholar
  38. Kalitzin, S.N., Velis, D.N., da Silva, F.H.L.: Stimulation-based anticipation and control of state transitions in the epileptic brain. Epilepsy Behav. 17(3), 310–323 (2010)Google Scholar
  39. Khambhati, A.N., Davis, K.A., Lucas, T.H., Litt, B., Bassett, D.S.: Virtual cortical resection reveals push-pull network control preceding seizure evolution. Neuron 91(5), 1170–1182 (2016)Google Scholar
  40. Kim, J.B., Suh, S., Seo, W.-K., Oh, K., Koh, S.-B., Kim, J.H.: Altered thalamocortical functional connectivity in idiopathic generalized epilepsy. Epilepsia 55(4), 592–600 (2014)Google Scholar
  41. Klinger, N.V., Mittal, S.: Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy. Clin. Neurol. Neurosurg. 140, 11–25 (2016)Google Scholar
  42. Kötter, R.: Online retrieval, processing, and visualization of primate connectivity data from the cocomac database. Neuroinformatics 2(2), 127–144 (2004)Google Scholar
  43. Kötter, R., Wanke, E.: Mapping brains without coordinates. Philos. Trans. R. Soc. B: Biol. Sci. 360(1456), 751–766 (2005)Google Scholar
  44. Kwan, P., Sander, J.W.: The natural history of epilepsy: an epidemiological view. J. Neurol. Neurosurg. Psychiatry 75(10), 1376–1381 (2004)Google Scholar
  45. Liao, W., Zhang, Z., Pan, Z., Mantini, D., Ding, J., Duan, X., Luo, C., Guangming, L., Chen, H.: Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS ONE 5(1), e8525 (2010)Google Scholar
  46. Lytton, W.W.: Computer modelling of epilepsy. Nat. Rev. Neurosci. 9(8), 626 (2008)Google Scholar
  47. Manford, M., Hart, Y.M., Sander, J.W.A.S., Shorvon, S.D.: The national general practice study of epilepsy: the syndromic classification of the international league against epilepsy applied to epilepsy in a general population. Arch. Neurol. 49(8), 801–808 (1992)Google Scholar
  48. Maynard, L.M., Leach, J.L., Horn, P.S., Spaeth, C.G., Mangano, F.T., Holland, K.D., Miles, L., Faist, R., Greiner, H.M.: Epilepsy prevalence and severity predictors in MRI-identified focal cortical dysplasia. Epilepsy Res. 132, 41–49 (2017)Google Scholar
  49. Morgan, R.J., Soltesz, I.: Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc. Natl. Acad. Sci. 105(16), 6179–6184 (2008)Google Scholar
  50. Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130(2), 314–333 (2006)Google Scholar
  51. Morrell, M.J.: Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77(13), 1295–1304 (2011)Google Scholar
  52. Newman, M.: Networks. Oxford University Press, Oxford (2018)zbMATHGoogle Scholar
  53. Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A.M., et al.: A mesoscale connectome of the mouse brain. Nature 508(7495), 207 (2014)Google Scholar
  54. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999)Google Scholar
  55. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109 (1998)Google Scholar
  56. Petkov, G., Goodfellow, M., Richardson, M.P., Terry, J.R.: A critical role for network structure in seizure onset: a computational modeling approach. Front. Neurol. 5, 261 (2014)Google Scholar
  57. Prayson, R.A., Estes, M.L.: Cortical dysplasia: a histopathologic study of 52 cases of partial lobectomy in patients with epilepsy. Hum. Pathol. 26(5), 493–500 (1995)Google Scholar
  58. Proix, T., Bartolomei, F., Chauvel, P., Bernard, C., Jirsa, V.K.: Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. J. Neurosci. 34(45), 15009–15021 (2014)Google Scholar
  59. Proix, T., Bartolomei, F., Guye, M., Jirsa, V.K.: Individual brain structure and modelling predict seizure propagation. Brain 140(3), 641–654 (2017)Google Scholar
  60. Semah, F., Broglin, D., Arzimanoglou, A., Cavalcanti, D., Baulac, M.: Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51, 1256–1262 (1998)Google Scholar
  61. Shah, P., Bernabei, J., Kini, L., Ashourvan, A., Boccanfuso, J., Archer, R., Oechsel, K., Lucas, T.H., Bassett, D.S., Davis, K., et al.: High interictal connectivity within the resection zone is associated with favorable post-surgical outcomes in focal epilepsy patients. bioRxiv, pp. 459008 (2018)Google Scholar
  62. Sinha, N., Dauwels, J., Kaiser, M., Cash, S.S., Brandon Westover, M., Wang, Y., Taylor, P.N.: Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 140(2), 319–332 (2016)Google Scholar
  63. Sørensen, A.T., Kokaia, M.: Novel approaches to epilepsy treatment. Epilepsia 54(1), 1–10 (2013)Google Scholar
  64. Spencer, S.S.: Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43(3), 219–227 (2002)Google Scholar
  65. Sveinbjornsdottir, S., Duncan, J.S.: Parietal and occipital lobe epilepsy: a review. Epilepsia 34(3), 493–521 (1993)Google Scholar
  66. Taylor, P.N., Baier, G.: A spatially extended model for macroscopic spike-wave discharges. J. Comput. Neurosci. 31(3), 679–684 (2011)Google Scholar
  67. Taylor, P.N., Goodfellow, M., Wang, Y., Baier, G.: Towards a large-scale model of patient-specific epileptic spike-wave discharges. Biol. Cybern. 107(1), 83–94 (2013)Google Scholar
  68. Terry, J.R., Benjamin, O., Richardson, M.P.: Seizure generation: the role of nodes and networks. Epilepsia 53(9), e166–e169 (2012)Google Scholar
  69. Vaessen, M.J., Jansen, J.F.A., Braakman, H.M.H., Hofman, P.A.M., De Louw, A., Aldenkamp, A.P., Backes, W.H.: Functional and structural network impairment in childhood frontal lobe epilepsy. PLoS ONE 9(3), e90068 (2014)Google Scholar
  70. van Diessen, E., Zweiphenning, W.J.E.M., Jansen, F.E., Stam, C.J., Braun, K.P.J., Otte, W.M.: Brain network organization in focal epilepsy: a systematic review and meta-analysis. PLoS ONE 9(12), e114606 (2014)Google Scholar
  71. Velasco, A.L., Velasco, F., Jiménez, F., Velasco, M., Castro, G., Carrillo-Ruiz, J.D., Fanghänel, G., Boleaga, B.: Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with lennox–gastaut syndrome. Epilepsia 47(7), 1203–1212 (2006)Google Scholar
  72. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440 (1998)zbMATHGoogle Scholar
  73. Wendling, F., Bartolomei, F., Bellanger, J.J., Chauvel, P.: Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition. Eur. J. Neurosci. 15(9), 1499–1508 (2002)Google Scholar
  74. Wendling, F., Chauvel, P., Biraben, A., Bartolomei, F.: From intracerebral eeg signals to brain connectivity: identification of epileptogenic networks in partial epilepsy. Front. Syst. Neurosci. 4, 154 (2010)Google Scholar
  75. World Health Organization: Neurological disorders: public health challenges. http://www.who.int/mental_health/neurology/neurological_disorders_report_web.pdf, p. 189 (2006). Accessed 11 Apr 2019

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ohio Wesleyan UniversityDelawareUSA
  2. 2.Wesleyan UniversityMiddletownUSA
  3. 3.VacavilleUSA
  4. 4.Gonzaga UniversitySpokaneUSA

Personalised recommendations