Convex Integration Arising in the Modelling of Shape-Memory Alloys: Some Remarks on Rigidity, Flexibility and Some Numerical Implementations

  • Angkana Rüland
  • Jamie M. TaylorEmail author
  • Christian Zillinger


We study convex integration solutions in the context of the modelling of shape-memory alloys. The purpose of the article is twofold, treating both rigidity and flexibility properties: Firstly, we relate the maximal regularity of convex integration solutions to the presence of lower bounds in variational models with surface energy. Hence, variational models with surface energy could be viewed as a selection mechanism allowing for or excluding convex integration solutions. Secondly, we present the first numerical implementations of convex integration schemes for the model problem of the geometrically linearised two-dimensional hexagonal-to-rhombic phase transformation. We discuss and compare the two algorithms from Rüland et al. (J Elast. 2019.; SIAM J Math Anal 50(4):3791–3841, 2018) and give a numerical estimate of the regularity attained.


Convex integration Higher Sobolev regularity Scaling laws Solid-solid phase transformations 

Mathematics Subject Classification

35B36 35B65 32F32 



During the research leading to these results Jamie M. Taylor held positions at the University of Oxford, at Kent State University and BCAM. His research received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 291053. Furthermore, he has been partially supported by the Basque Government through the BERC 2018-2021 programme and by Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project MTM2017-82184-R funded by (AEI/FEDER, UE) and acronym “DESFLU”. Christian Zillinger acknowledges the support of an AMS-Simons Travel Grant.


  1. Agostiniani, V., Blass, T., Koumatos, K.: From nonlinear to linearized elasticity via \(\Gamma \)-convergence: the case of multiwell energies satisfying weak coercivity conditions. Math. Models Methods Appl. Sci. 25(01), 1–38 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343. Springer, Berlin (2011)zbMATHGoogle Scholar
  3. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Ball, J.M.: Some open problems in elasticity. In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, Berlin (2002)CrossRefGoogle Scholar
  5. Ball, J.M.: Mathematical models of martensitic microstructure. Mater. Sci. Eng. A 378(1–2), 61–69 (2004). European Symposium on Martensitic Transformation and Shape-MemoryCrossRefGoogle Scholar
  6. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. In: Antman, S.S., Brezis, H., Coleman, B.D., Feinberg, M., Nohel, J.A., Ziemer, W.P. (eds.) Analysis and Continuum Mechanics, pp. 647–686. Springer (1989)Google Scholar
  7. Ball, J.M., Mora-Corral, C.: A variational model allowing both smooth and sharp phase boundaries in solids. Commun. Pure Appl. Anal. 8(1), 55–81 (2009)MathSciNetzbMATHGoogle Scholar
  8. Ball, J.M., Cesana, P., Hambly, B.: A probabilistic model for martensitic avalanches. In: MATEC Web of Conferences, vol. 33. EDP Sciences (2015)Google Scholar
  9. Bhattacharya, K.: Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin. Mech. Thermodyn. 5(3), 205–242 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford Series on Materials Modeling. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  11. Brezis, H., Mironescu, P.: Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1(4), 387–404 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Buckmaster, T., De Lellis, C., Székelyhidi Jr, L., Vicol, V.: Onsager’s conjecture for admissible weak solutions. arXiv preprint arXiv:1701.08678 (2017)
  13. Bui, H.-Q., Candy, T.: A characterisation of the Besov–Lipschitz and Triebel–Lizorkin spaces using Poisson like kernels. arXiv preprint arXiv:1502.06836 (2015)
  14. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Capella, A., Otto, F.: A rigidity result for a perturbation of the geometrically linear three-well problem. Commun. Pure Appl. Math. 62(12), 1632–1669 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Capella, A., Otto, F.: A quantitative rigidity result for the cubic-to-tetragonal phase transition in the geometrically linear theory with interfacial energy. Proc. R. Soc. Edinb. Sect. A Math. 142, 273–327 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  17. Cesana, P., Hambly, B.: A probabilistic model for interfaces in a martensitic phase transition. arXiv preprint arXiv:1810.04380 (2018)
  18. Cesana, P., Porta, M., Lookman, T.: Asymptotic analysis of hierarchical martensitic microstructure. J. Mech. Phys. Solids 72, 174–192 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Chan, A., Conti, S.: Energy scaling and branched microstructures in a model for shape-memory alloys with so (2) invariance. Math. Models Methods Appl. Sci. 25(06), 1091–1124 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Conti, S.: Branched microstructures: scaling and asymptotic self-similarity. Commun. Pure Appl. Math. 53(11), 1448–1474 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Conti, S., De Lellis, C., Székelyhidi, L.: h-Principle and rigidity for \({C}^{1, \alpha }\) isometric embeddings. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear Partial Differential Equations, pp. 83–116. Springer (2012)Google Scholar
  22. Conti, S., Klar, M., Zwicknagl, B.: Piecewise affine stress-free martensitic inclusions in planar nonlinear elasticity. Proc. R. Soc. A 473(2203), 20170235 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations, vol. 37. Springer, Berlin (2012)zbMATHGoogle Scholar
  24. Dacorogna, B., Marcellini, P., Paolini, E.: An explicit solution to a system of implicit differential equations. In: Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 25, pp. 163–171. Elsevier (2008a)Google Scholar
  25. Dacorogna, B., Marcellini, P., Paolini, E.: Lipschitz-continuous local isometric immersions: rigid maps and origami. Journal de mathématiques pures et appliquées 90(1), 66–81 (2008b)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Dacorogna, B., Marcellini, P., Paolini, E.: Origami and partial differential equations. Notices AMS 57(5), 598–606 (2010)MathSciNetzbMATHGoogle Scholar
  27. Dal Maso, G., Negri, M., Percivale, D.: Linearized elasticity as \(\gamma \)-limit of finite elasticity. Set Valued Anal. 10(2–3), 165–183 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Dolzmann, G., Müller, S.: The influence of surface energy on stress-free microstructures in shape memory alloys. Meccanica 30, 527–539 (1995a). MathSciNetCrossRefzbMATHGoogle Scholar
  29. Dolzmann, G., Müller, S.: Microstructures with finite surface energy: the two-well problem. Arch. Ration. Mech. Anal. 132, 101–141 (1995b)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Dolzmann, G., Kirchheim, B., Müller, S., Šverák, V.: The two-well problem in three dimensions. Calc. Var. Partial Differ. Equ. 10, 21–40 (2000). MathSciNetCrossRefzbMATHGoogle Scholar
  31. Frisch, U.: Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  32. Gromov, M.L.: Convex integration of differential relations i. Izv. Math. 7(2), 329–343 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Inamura, T.: Martensitic material. An experiment from experiment of Tomonari Inamura’s group. Accessed 08 Jan 2018
  34. Isett, P.: A proof of Onsager’s conjecture. arXiv preprint arXiv:1608.08301 (2016)
  35. Khachaturyan, A.G.: Theory of Structural Transformations in Solids. Courier Corporation, North Chelmsford (2013)Google Scholar
  36. Kirchheim, B.: Lipschitz minimizers of the 3-well problem having gradients of bounded variation. (1998).
  37. Kirchheim, B.: Rigidity and geometry of microstructures. MPI-MIS Lect. Notes (2003).
  38. Kitano, Y., Kifune, K.: HREM study of disclinations in MgCd ordered alloy. Ultramicroscopy 39(1–4), 279–286 (1991)CrossRefGoogle Scholar
  39. Knüpfer, H., Kohn, R.V., Otto, F.: Nucleation barriers for the cubic-to-tetragonal phase transformation. Commun. Pure Appl. Math. 66(6), 867–904 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47(4), 405–435 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  41. Lenzmann, E., Schikorra, A.: Sharp commutator estimates via harmonic extensions. arXiv preprint arXiv:1609.08547 (2016)
  42. Müller, S.: Variational models for microstructure and phase transitions. In: Hildebrandt, S., Struwe, M. (eds.) Calculus of Variations and Geometric Evolution Problems, pp. 85–210. Springer, Berlin (1999)CrossRefGoogle Scholar
  43. Müller, S., Šverák, V.: Unexpected solutions of first and second order partial differential equations. In: International Congress, p. 691 (1998)Google Scholar
  44. Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–422 (1999). MathSciNetCrossRefzbMATHGoogle Scholar
  45. Opic, B., Kufner, A.: Hardy-Type Inequalities, vol. 219. Halsted Press, New York (1990)zbMATHGoogle Scholar
  46. Pedregal, P.: Parametrized Measures and Variational Principles, vol. 30. Birkhauser, Basel (1997)CrossRefzbMATHGoogle Scholar
  47. Rüland, A.: The cubic-to-orthorhombic phase transition: rigidity and non-rigidity properties in the linear theory of elasticity. Arch. Ration. Mech. Anal. 221(1), 23–106 (2016a)MathSciNetCrossRefzbMATHGoogle Scholar
  48. Rüland, A.: A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticity. J. Elast. 123(2), 137–177 (2016b)MathSciNetCrossRefzbMATHGoogle Scholar
  49. Rüland, A., Zillinger, C., Zwicknagl, B.: Higher Sobolev regularity of convex integration solutions in elasticity: The planar geometrically linearized hexagonal-to-rhombic phase transformation. J Elast. (2019). zbMATHGoogle Scholar
  50. Rüland, A., Zillinger, C., Zwicknagl, B.: Higher Sobolev regularity of convex integration solutions in elasticity: the Dirichlet problem with affine data in \(\text{ int }(K^{lc})\). SIAM J. Math. Anal. 50(4), 3791–3841 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  51. Sickel, W.: Pointwise multipliers of Lizorkin-Triebel spaces. In: Rossmann, J., Takáč, P., Wildenhain, G. (eds.) The Maz’ya Anniversary Collection, pp. 295–321. Springer, Berlin (1999)CrossRefGoogle Scholar
  52. Simon, T.: Rigidity of branching microstructures in shape memory alloys. arXiv preprint arXiv:1705.03664 (2017)
  53. Székelyhidi Jr., L.: From isometric embeddings to turbulence. In: HCDTE Lecture Notes. Part II. Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations. AIMS Series on Applied Mathematics, vol. 7, pp. 195–255. American Institute of Mathematical Sciences (AIMS) (2013)Google Scholar
  54. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106. American Mathematical Society, Providence (2006)zbMATHGoogle Scholar
  55. Torrents, G., Illa, X., Vives, E., Planes, A.: Geometrical model for martensitic phase transitions: understanding criticality and weak universality during microstructure growth. Phys. Rev. E 95(1), 013001 (2017)CrossRefGoogle Scholar
  56. Triebel, H.: Theory of Function Spaces. III. Monographs in Mathematics, vol. 100. BirkhauserVerlag, Basel (2006)zbMATHGoogle Scholar
  57. Yu Pasko, A., Likhachev, A.A., Koval, Y.N., Kolomytsev, V.: 2d Fourier analysis and its application to study of scaling properties and fractal dimensions of \(\varepsilon \)-martensite distribution in \(\gamma \)-matrix of Fe-Mn-Si alloy. Le J. de Phys. IV 7(C5), C5–435 (1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Basque Center for Applied MathematicsBilbaoSpain

Personalised recommendations