Advertisement

Reduced One-Dimensional Models for Wave Turbulence System

  • Wonjung LeeEmail author
Article
  • 21 Downloads

Abstract

While studying many wave turbulence (WT) phenomena, owing to their inherent complexity, one frequently encounters the necessity of uncertainty quantification (UQ) in high dimension. The implementation of many existing algorithms for the UQ under these circumstances demands a vast amount of computation and, as a consequence, the straightforward approach tends to be infeasible or impractical. One effort to circumvent this obstacle in high dimension is to find an effective dimension reduction procedure for the probability distribution of the dynamical system model. One of the methodologies to do this is to replace the true Markovian model with a simple stochastic model that is significantly more amenable to the UQ than the underlying system. The procedure can be carried out via approximating the original equation for each Fourier mode by an independent and analytically tractable stochastic differential equation. In this work, we introduce a new approach for the so-called reduced-order model strategy within the context of the Majda–McLaughlin–Tabak model. Our framework makes use of a detailed analysis of the one-dimensional WT prototype to build a family of simplified models. Furthermore, the adaptive parameters are tuned without performing a direct numerical simulation of the true dynamical system model.

Keywords

Wave turbulence Majda–McLaughlin–Tabak model Reduced-order model strategy Mori–Zwanzig projection theory Mean-field argument Random frequency modulation 

Mathematics Subject Classification

74J30 82B31 60G10 

Notes

Acknowledgements

This work is supported by the Early Career Scheme of Hong Kong, Project No. 9048086 (CityU 21302416), and the Strategic Research Grant of City University of Hong Kong (No. 7004971 and No. 7005133). The author thanks Professor David Cai for helpful discussions and suggestions. The author also thanks the anonymous referees for their helpful comments and suggestions, which indeed contributed to improving the quality of the publication.

References

  1. Branicki, M., Gershgorin, B., Majda, A.: Filtering skill for turbulent signals for a suite of nonlinear and linear extended kalman filters. J. Comput. Phys. 231(4), 1462–1498 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Branicki, M., Majda, A.: Dynamic stochastic superresolution of sparsely observed turbulent systems. J. Comput. Phys. 241, 333–363 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Cai, D., Majda, A.J., McLaughlin, D.W., Tabak, E.G.: Dispersive wave turbulence in one dimension. Phys. D Nonlinear Phenom. 152, 551–572 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Castronovo, E., Harlim, J., Majda, A.: Mathematical test criteria for filtering complex systems: plentiful observations. J. Comput. Phys. 227(7), 3678–3714 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Channell, P., Scovel, C.: Symplectic integration of hamiltonian systems. Nonlinearity 3, 231 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Chibbaro, S., De Lillo, F., Onorato, M.: Weak versus strong wave turbulence in the Majda–McLaughlin–Tabak model. Phys. Rev. Fluids 2(5), 052603 (2017)CrossRefGoogle Scholar
  7. Chibbaro, S., Dematteis, G., Rondoni, L.: 4-wave dynamics in kinetic wave turbulence. Phys. D Nonlinear Phenom. 362, 24–59 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Choi, Y., Lvov, Y.V., Nazarenko, S., Pokorni, B.: Anomalous probability of large amplitudes in wave turbulence. Phys. Lett. A 339(3–5), 361–369 (2005)CrossRefzbMATHGoogle Scholar
  9. Gershgorin, B., Majda, A.: A nonlinear test model for filtering slow–fast systems. Commun. Math. Sci. 6(3), 611–649 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Gershgorin, B., Lvov, Y., Cai, D.: Interactions of renormalized waves in thermalized Fermi–Pasta–Ulam chains. Phys. Rev. E 75(4), 046603 (2007)MathSciNetCrossRefGoogle Scholar
  11. Gershgorin, B., Harlim, J., Majda, A.: Test models for improving filtering with model errors through stochastic parameter estimation. J. Comput. Phys. 229(1), 1–31 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Harlim, J., Majda, A.: Filtering nonlinear dynamical systems with linear stochastic models. Nonlinearity 21(6), 1281 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Harlim, J., Majda, A.J.: Test models for filtering with superparameterization. Multiscale Model. Simul. 11(1), 282–308 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Keating, S.R., Majda, A.J., Smith, K.S.: New methods for estimating poleward eddy heat transport using satellite altimetry. Mon. Weather Rev. 140, 1703–1722 (2011)CrossRefGoogle Scholar
  15. Lee, W., Kovacic, G., Cai, D.: Renormalized resonance quartets in dispersive wave turbulence. Phys. Rev. Lett. 103(2), 24502 (2009)CrossRefGoogle Scholar
  16. Lee, W., Kovačič, G., Cai, D.: Generation of dispersion in nondispersive nonlinear waves in thermal equilibrium. Proc. Natl. Acad. Sci. 110(9), 3237–3241 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Lepri, S.: Relaxation of classical many-body hamiltonians in one dimension. Phys. Rev. E 58(6), 7165 (1998)CrossRefGoogle Scholar
  18. Majda, A., McLaughlin, D., Tabak, E.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 7(1), 9–44 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Majda, A., Harlim, J., Gershgorin, B.: Mathematical strategies for filtering turbulent dynamical systems. Discrete Contin. Dyn. Syst. 27(2), 441–486 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Majda, A.J., Harlim, J.: Filtering Complex Turbulent Systems. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
  21. Mori, H.: Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33, 423–455 (1965)CrossRefzbMATHGoogle Scholar
  22. Nazarenko, S.: Wave Turbulence, vol. 825. Springer, Berlin (2011)zbMATHGoogle Scholar
  23. Salmon, R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press, Oxford (1998)Google Scholar
  24. Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian problems: an overview. Acta Numer. 1, 243–286 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Sapsis, T.P., Majda, A.J.: A statistically accurate modified quasilinear gaussian closure for uncertainty quantification in turbulent dynamical systems. Phys. D Nonlinear Phenom. 252, 34–45 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Whitham, G.: Linear and Nonlinear Waves, vol. 42. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  27. Yakhot, V., Zakharov, V.: Hidden conservation laws in hydrodynamics; energy and dissipation rate fluctuation spectra in strong turbulence. Physica D: Nonlinear Phenom. 64(4), 379–394 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Zakharov, V., L’vov, V., Falkovich, G.: Kolmogorov spectra of turbulence 1. Wave turbulence. Kolmogorov spectra of turbulence 1. Wave turbulence., by Zakharov, VE; L’vov, VS; Falkovich, G. Springer, Berlin, p. 275 (1992). ISBN: 3-540-54533-6, 1Google Scholar
  29. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9(3), 215–220 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsCity University of Hong KongKowloon TongHong Kong

Personalised recommendations