Advertisement

Journal of Nonlinear Science

, Volume 29, Issue 4, pp 1379–1417 | Cite as

Differential-Geometric-Control Formulation of Flapping Flight Multi-body Dynamics

  • Ahmed M. HassanEmail author
  • Haithem E. Taha
Article

Abstract

Flapping flight dynamics is quite an intricate problem that is typically represented by a multi-body, multi-scale, nonlinear, time-varying dynamical system. The unduly simple modeling and analysis of such dynamics in the literature has long obstructed the discovery of some of the fascinating mechanisms that these flapping-wing creatures possess. Neglecting the wing inertial effects and directly averaging the dynamics over the flapping cycle are two major simplifying assumptions that have been extensively used in the literature of flapping flight balance and stability analysis. By relaxing these assumptions and formulating the multi-body dynamics of flapping-wing micro-air-vehicles in a differential-geometric-control framework, we reveal a vibrational stabilization mechanism that greatly contributes to the body pitch stabilization. The discovered vibrational stabilization mechanism is induced by the interaction between the fast oscillatory aerodynamic loads on the wings and the relatively slow body motion. This stabilization mechanism provides an artificial stiffness (i.e., spring action) to the body rotation around its pitch axis. Such a spring action is similar to that of Kapitsa pendulum where the unstable inverted pendulum is stabilized through applying fast-enough periodic forcing. Such a phenomenon cannot be captured using the overly simplified modeling and analysis of flapping flight dynamics.

Keywords

Differential-geometric-control Flapping flight Time-periodic systems Vibrational stabilization Multi-body dynamic 

Mathematics Subject Classification

53Z05 93D99 34H15 76G25 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the National Science Foundation Grant CMMI-1709746.

References

  1. Agrachev, A.A., Gamkrelidze, R.V.: The exponential representation of flows and the chronological calculus. Matemat. Sb. 149(4), 467–532 (1978)zbMATHGoogle Scholar
  2. Bellman, R., Bentsman, J., Meerkov, S.M.: On vibrational stabilizability of nonlinear systems. J. Optim. Theory Appl. 46(4), 421–430 (1985)MathSciNetzbMATHGoogle Scholar
  3. Berman, G.J., Wang, Z.J.: Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582(1), 153,168 (2007)MathSciNetzbMATHGoogle Scholar
  4. Birch, J.M., Dickinson, M.H.: Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412(6848), 729 (2001)Google Scholar
  5. Birch, J.M., Dickson, W.B., Dickinson, M.H.: Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J. Exp. Biol. 207(7), 1063–1072 (2004)Google Scholar
  6. Bullo, F.: Averaging and vibrational control of mechanical systems. SIAM J. Control Optim. 41(2), 542–562 (2002)MathSciNetzbMATHGoogle Scholar
  7. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, vol. 49. Springer, Berlin (2004)Google Scholar
  8. Cheng, B., Deng, X.: Translational and rotational damping of flapping flight and its dynamics and stability at hovering. IEEE Trans. Robot. 27(5), 849–864 (2011)MathSciNetGoogle Scholar
  9. Dednam, W., Botha, A.E.: Optimized shooting method for finding periodic orbits of nonlinear dynamical systems. Eng. Comput. 31(4), 749–762 (2015)Google Scholar
  10. Deng, X., Schenato, L., Wu, W.C., Sastry, S.S.: Flapping flight for biomemetic robotic insects: part II flight control design. IEEE Trans. Robot. 22(4), 789–803 (2006)Google Scholar
  11. Dickinson, M.H., Lehmann, F.-O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284(5422), 1954–1960 (1999)Google Scholar
  12. Dietl, J.M., Garcia, E.: Stability in ornithopter longitudinal flight dynamics. J. Guid. Control Dyn. 31(4), 1157–1162 (2008a)Google Scholar
  13. Dietl, J.M., Garcia, E.: Stability in ornithopter longitudinal flight dynamics. J. Guid. Control Dyn. 31(4), 1157–1163 (2008b)Google Scholar
  14. Doman, D.B., Oppenheimer, M.W., Sigthorsson, D.O.: Wingbeat shape modulation for flapping-wing micro-air-vehicle control during hover. J. Guid. Control Dyn. 33(3), 724–739 (2010)Google Scholar
  15. Dudley, R., Ellington, C.P.: Mechanics of forward flight in bumblebees: II. Quasi-steady lift and power requirements. J. Exp. Biol. 148, 53–88 (1990)Google Scholar
  16. Ellington, C.P.: The aerodynamics of hovering insect flight: III. Kinematics. Philos. Trans. R Soc. Lond Ser. B 305, 41–78 (1984a)Google Scholar
  17. Ellington, C.P.: The aerodynamics of hovering insect flight. II. Morphological parameters. Philos. Trans. R. Soc. Lond. Ser. B 305, 17–40 (1984b)Google Scholar
  18. Ellington, C.P.: Unsteady aerodynamics of insect flight. In: Symposia of the Society for Experimental Biology, vol. 49, pp. 109–129 (1995)Google Scholar
  19. Ellington, C.P., Van den Berg, C., Willmott, A.P., Thomas, A.L.R.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)Google Scholar
  20. Etkin, B.: Dynamics of Flight—Stabililty and Control. Wiley, Hoboken (1996)Google Scholar
  21. Gavin, H.: The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University, pp. 1–15 (2011)Google Scholar
  22. Greenwood, D.T.: Advanced Dynamics. Cambridge University Press, Cambridge (2003)Google Scholar
  23. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer, Berlin (2013)zbMATHGoogle Scholar
  24. Hassan, A.M., Taha, H.E.: Higher-order averaging analysis of the nonlinear time-periodic dynamics of hovering insects/flapping-wing micro-air-vehicles. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 7477–7482. IEEE (2016)Google Scholar
  25. Hassan, A.M., Taha, H.E.: Combined averaging-shooting approach for the analysis of flapping flight dynamics. J. Guid. Control Dyn. 41(2), 542–549 (2017a)Google Scholar
  26. Hassan, A.M., Taha, H.E.: A combined averaging-shooting approach for the trim analysis of hovering insects/flapping-wing micro-air-vehicles. In: AIAA Guidance, Navigation, and Control Conference, p. 1734 (2017b)Google Scholar
  27. Hussein, A., Taha, H.E.: Minimum-time transition of FWMAVs from hovering to forward flight. In AIAA Atmospheric Flight Mechanics Conference, p. 0017 (2016)Google Scholar
  28. Hussein, A.A., Canfield, R.A.: Unsteady aerodynamic stabilization of the dynamics of hingeless rotor blades in hover. AIAA J. 56(3), 1298–1303 (2017)Google Scholar
  29. Hussein, A.A., Hajj, M.R., Elkholy, S.M., ELbayoumi, G.M.: Dynamic stability of hingeless rotor blade in hover using padé approximations. AIAA J. 14, 1769–1777 (2016)Google Scholar
  30. Hussein, A.A., Hajj, M.R., Woolsey, C.: Stable, planar self propulsion using a hinged flap. IFAC-PapersOnLine 51(29), 395–399 (2018)Google Scholar
  31. Kapitsa, P.L.: Pendulum with a vibrating suspension. Uspekhi Fiz. Nauk 44(1), 7–20 (1951)Google Scholar
  32. Kapitsa, P.L.: Dynamical stability of a pendulum when its point of suspension vibrates. Collect. Pap. PL Kapitsa 2, 714–725 (1965)Google Scholar
  33. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
  34. Khan, Z.A., Agrawal, S.K.: Control of longitudinal flight dynamics of a flapping wing micro air vehicle using time averaged model and differential flatness based controller, pp. 5284–5289. IEEE American Control Conference (2007)Google Scholar
  35. Liu, H., Ellington, C.P., Kawachi, K., Van Den Berg, C., Willmott, A.P.: A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 201(4), 461–477 (1998)Google Scholar
  36. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, Hoboken (1995)zbMATHGoogle Scholar
  37. Nelson, R.C.: Flight Stability and Automatic Control. McGraw-Hill, New York (1989)Google Scholar
  38. Nijmeijer, H., Van der Schaft, A.: Nonlinear Dynamical Control Systems, vol. 175. Springer, Berlin (1990)zbMATHGoogle Scholar
  39. Norberg, R.A.: Hovering flight of the dragonfly aeschna juncea l., kinematics and aerodynamics. In: Swimming and flying in nature, pp. 763–781. Springer (1975)Google Scholar
  40. Oppenheimer, M.W., Doman, D.B., Sigthorsson, D.O.: Dynamics and control of a biomimetic vehicle using biased wingbeat forcing functions. J. Guid. Control Dyn. 34(1), 204–217 (2011)Google Scholar
  41. Orlowski, C.T., Girard, A.R.: Dynamics, stability, and control analyses of flapping wing micro-air vehicles. Prog. Aerosp. Sci. 51, 18–30 (2012)Google Scholar
  42. Polhamus, E.C.: A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction analogy. Technical Report NASA TN D-3767, Langely Research Center, Langely Station, Hampton, VA (1966)Google Scholar
  43. Ramamurti, R., Sandberg, W.C.: A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J. Exp. Biol. 205(10), 1507–1518 (2002)Google Scholar
  44. Rozhdestvensky, K.V., Ryzhov, V.A.: Aerohydrodynamics of flapping-wing propulsors. Prog. Aerosp. Sci. 39(8), 585–633 (2003)Google Scholar
  45. Sanders, J.A., Verhulst, F., Murdock, J.A.: Averaging Methods in Nonlinear Dynamical Systems, vol. 59. Springer, Berlin (2007)zbMATHGoogle Scholar
  46. Sarychev, A.: Stability criteria for time-periodic systems via high-order averaging techniques. In: Nonlinear control in the year 2000 vol. 2, pp. 365–377. Springer (2001a)Google Scholar
  47. Sarychev, A.V.: Lie-and chronologico-algebraic tools for studying stability of time-varying systems. Syst. Control Lett. 43(1), 59–76 (2001b)MathSciNetzbMATHGoogle Scholar
  48. Schenato, L., Campolo, D., Sastry, S.S.: Controllability issues in flapping flight for biomemetic MAVs. volume 6, pp. 6441–6447. In: 42nd IEEE conference on Decision and Control (2003)Google Scholar
  49. Schlichting, H., Truckenbrodt, E.: Aerodynamics of the Airplane. McGraw-Hill, New York (1979)Google Scholar
  50. Stanford, B., Beran, P., Patil, M.: Optimal flapping-wing vehicle dynamics via floquet multiplier sensitivities. J. Guid. Control Dyn. 36(2), 454–466 (2013)Google Scholar
  51. Stephenson, A.: On induced stability. Lond. Edinb. Dublin Philos. Mag. J. Sci. 15(86), 233–236 (1908)zbMATHGoogle Scholar
  52. Sun, M., Xiong, Y.: Dynamic flight stability of a hovering bumblebee. J. Exp. Biol. 208(3), 447–459 (2005)Google Scholar
  53. Sun, M., Wang, J., Xiong, Y.: Dynamic flight stability of hovering insects. Acta Mech. Sin. 23(3), 231–246 (2007)MathSciNetzbMATHGoogle Scholar
  54. Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Flight dynamics and control of flapping-wing MAVs: a review. Nonlinear Dyn. 70(2), 907–939 (2012)MathSciNetGoogle Scholar
  55. Taha, H.E., Nayfeh, A.H., Hajj, M.R.: Aerodynamic-dynamic interaction and longitudinal stability of hovering MAVs/insects. In: 54th Structural Dynamics and Materials Conference Number AIAA 2013-1707, Boston (2013a)Google Scholar
  56. Taha, H.E., Hajj, M.R., Beran, P.S.: Unsteady nonlinear aerodynamics of hovering MAVs/insects. AIAA-Paper 2013-0504 (2013b)Google Scholar
  57. Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Wing kinematics optimization for hovering micro air vehicles using calculus of variation. J. Aircr. 50(2), 610–614 (2013c)Google Scholar
  58. Taha, H.E., Nayfeh, A.H., Hajj, M.R.: Saturation-based actuation for flapping mavs in hovering and forward flight. Nonlinear Dyn. 73(1), 1125–1138 (2013d)MathSciNetGoogle Scholar
  59. Taha, H.E., Nayfeh, A.H., Hajj, M.R.: Effect of the aerodynamic-induced parametric excitation on the longitudinal stability of hovering mavs/insects. Nonlinear Dyn. 78(4), 2399–2408 (2014a)Google Scholar
  60. Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Longitudinal flight dynamics of hovering MAVs/insects. J. Guid. Control Dyn. 37(3), 970–979 (2014b)Google Scholar
  61. Taha, H.E., Hajj, M.R., Beran, P.S.: State-space representation of the unsteady aerodynamics of flapping flight. Aerosp. Sci. Technol. 34, 1–11 (2014c)Google Scholar
  62. Taha, H.E., Tahmasian, S., Woolsey, C.A., Nayfeh, A.H., Hajj, M.R.: The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight. Bioinspir. Biomim. 10(1), 016002 (2015)Google Scholar
  63. Taha, H.E., Woolsey, C.A., Hajj, M.R.: Geometric control approach to longitudinal stability of flapping flight. J. Guid. Control Dyn. 39(2), 214–226 (2016)Google Scholar
  64. Taha, H., Kiani, M., Navarro, J.: Experimental demonstration of the vibrational stabilization phenomenon in bio-inspired flying robots. IEEE Robot. Autom. Lett. 3(2), 643–647 (2018)Google Scholar
  65. Tahmasian, S., Woolsey, C.A.: Flight control of biomimetic air vehicles using vibrational control and averaging. J. Nonlinear Sci. 27(4), 1193–1214 (2017)MathSciNetzbMATHGoogle Scholar
  66. Taylor, G.K., Thomas, A.L.R.: Animal flight dynamics II. Longitudinal stability in flapping flight. J. Theor. Biol. 214, 351–370 (2002)Google Scholar
  67. Taylor, G.K., Thomas, A.L.R.: Dynamic flight stability in the desert locust. J. Theor. Biol. 206, 2803–2829 (2003)Google Scholar
  68. Taylor, G.K., Zbikowski, R.: Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. J. R. Soc. Interface 2(3), 197–221 (2005)Google Scholar
  69. Thomas, A.L.R., Taylor, G.K.: Animal flight dynamics I. Stability in gliding flight. J. Theor. Biol. 212(1), 399–424 (2001)Google Scholar
  70. Vela, P.A.: Averaging and control of nonlinear systems. Ph.D. thesis, California Institute of Technology (2003)Google Scholar
  71. Wang, Z.J.: Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 410, 323–341 (2000)zbMATHGoogle Scholar
  72. Weis-Fogh, T.: Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59(1), 169–230 (1973)Google Scholar
  73. Willmott, A.P., Ellington, C.P.: The mechanisms of flight in the hawkmoth Manduca sexta. I: kinematics of hovering and forward flight. J. Exp. Biol. 200(21), 2705–2722 (1997)Google Scholar
  74. Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. Autom. 24(2), 341–347 (2008)Google Scholar
  75. Wu, J.H., Sun, M.: Floquet stability analysis of the longitudinal dynamics of two hovering model insects. J. R. Soc. Interface 9(74), 2033–2046 (2012)Google Scholar
  76. Wu, J.H., Zhang, Y.L., Sun, M.: Hovering of model insects: simulation by coupling equations of motion with Navier–Stokes equations. J. Exp. Biol. 212(20), 3313–3329 (2009)Google Scholar
  77. Xiong, Y., Sun, M.: Dynamic flight stability of a bumble bee in forward flight. Acta Mech. Sin. 24(3), 25–36 (2008)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA
  2. 2.Henry Samueli Career Development Chair, Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA

Personalised recommendations