Advertisement

Asymptotic Formulas for Extreme Statistics of Escape Times in 1, 2 and 3-Dimensions

  • K. Basnayake
  • Z. Schuss
  • D. Holcman
Article
  • 3 Downloads

Abstract

The first of N identical independently distributed (i.i.d.) Brownian trajectories that arrives to a small target sets the time scale of activation, which in general is much faster than the arrival to the target of a single trajectory only. Analytical asymptotic expressions for the minimal time is notoriously difficult to compute in general geometries. We derive here asymptotic laws for the probability density function of the first and second arrival times of a large number N of i.i.d. Brownian trajectories to a small target in 1, 2 and 3-dimensions and study their range of validity by stochastic simulations. The results are applied to activation of biochemical pathways in cellular biology.

Keywords

Short time asymptotics Diffusion Narrow escape Extreme statistics Transient Calcium dynamics Helmoltz Dendritic spine 

Mathematics Subject Classification

35K08 35J08 35J05 60G70 92C05 92C37 

Notes

Acknowledgements

We thank C. Guerrier for her help in designing the two-dimensional simulations. This research was supported by the Foundation pour la Recherche Médicale—Équipes FRM 2016 grant DEQ20160334882.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation, North Chelmsford (1964)zbMATHGoogle Scholar
  2. Chen, W., Ward, M.J.: The stability and dynamics of localized spot patterns in the two-dimensional Gray–Scott model. SIAM J. Appl. Dyn. Syst. 10(2), 582–666 (2011)MathSciNetCrossRefGoogle Scholar
  3. Chou, T., Dorsogna, M.: First passage problems in biology. First-Passage Phenom. Their Appl. 35, 306 (2014)MathSciNetCrossRefGoogle Scholar
  4. Colin de Verdière, Y.: Spectre du laplacien et longueurs des géodésiques périodiques i. Compos. Math. 27(1), 83–106 (1973)zbMATHGoogle Scholar
  5. Freche, D., Pannasch, U., Rouach, N., Holcman, D.: Synapse geometry and receptor dynamics modulate synaptic strength. PLoS ONE 6(10), e25122 (2011)CrossRefGoogle Scholar
  6. Gross, O.P., Pugh, E.N., Burns, M.E.: Calcium feedback to cgmp synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. Neuron 76(2), 370–382 (2012)CrossRefGoogle Scholar
  7. Guerrier, C., Korkotian, E., Holcman, D.: Calcium dynamics in neuronal microdomains: Modeling, stochastic simulations, and data analysis. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 486–516. Springer, New York, NY (2015)Google Scholar
  8. Hille, B.: Ion Channels of Excitable Membranes, vol. 507. Sinauer, Sunderland (2001)Google Scholar
  9. Holcman, D., Schuss, Z.: Escape through a small opening: receptor trafficking in a synaptic membrane. J. Stat. Phys. 117(5), 975–1014 (2004)MathSciNetCrossRefGoogle Scholar
  10. Holcman, D., Schuss, Z.: Diffusion escape through a cluster of small absorbing windows. J. Phys. A Math. Theor. 41(15), 155001 (2008)MathSciNetCrossRefGoogle Scholar
  11. Holcman, D., Schuss, Z.: The narrow escape problem. SIAM Rev. 56(2), 213–257 (2014)MathSciNetCrossRefGoogle Scholar
  12. Holcman, D., Schuss, Z.: Stochastic Narrow Escape in Molecular and Cellular Biology. Analysis and Applications. Springer, New York (2015)zbMATHGoogle Scholar
  13. Holcman, D., Schuss, Z., Korkotian, E.: Calcium dynamics in dendritic spines and spine motility. Biophys. J. 87(1), 81–91 (2004)CrossRefGoogle Scholar
  14. Holcman, D., Marchewka, A., Schuss, Z.: Survival probability of diffusion with trapping in cellular neurobiology. Phys. Rev. E 72(3), 031910 (2005)CrossRefGoogle Scholar
  15. Katz, B., Voolstra, O., Tzadok, H., Yasin, B., Rhodes-Modrov, E., Bartels, J.-P., Strauch, L., Huber, A., Minke, B.: The latency of the light response is modulated by the phosphorylation state of drosophila trp at a specific site. Channels 37, 1–8 (2017)Google Scholar
  16. Krapivsky, P., Majumdar, S.N., Rosso, A.: Maximum of n independent brownian walkers till the first exit from the half-space. J. Phys. A Math. Theor. 43(31), 315001 (2010)MathSciNetCrossRefGoogle Scholar
  17. Majumdar, S.N., Pal, A.: Extreme value statistics of correlated random variables. (2014). arXiv preprint arXiv:1406.6768
  18. Redner, S., Meerson, B.: First invader dynamics in diffusion-controlled absorption. J. Stat. Mech. Theory Exp. 2014(6), P06019 (2014)CrossRefGoogle Scholar
  19. Reingruber, J., Pahlberg, J., Woodruff, M.L., Sampath, A.P., Fain, G.L., Holcman, D.: Detection of single photons by toad and mouse rods. Proc. Natl. Acad. Sci. 110(48), 19378–19383 (2013)CrossRefGoogle Scholar
  20. Schehr, G.: Extremes of n vicious walkers for large n: application to the directed polymer and kpz interfaces. J. Stat. Phys. 149(3), 385–410 (2012)MathSciNetCrossRefGoogle Scholar
  21. Schuss, Z.: Theory and Applications of Stochastic Processes: An Analytical Approach, vol. 170. Springer, New York (2009)zbMATHGoogle Scholar
  22. Schuss, Z.: Diffusion and Stochastic Processes: An Analytical Approach. Springer Series on Applied Mathematical Sciences, vol. 170. Springer, New York (2010)Google Scholar
  23. Schuss, Z.: Brownian Dynamics at Boundaries and Interfaces. Springer, New York (2015)Google Scholar
  24. Schuss, Z., Spivak, A.: On recovering the shape of a domain from the trace of the heat kernel. SIAM J. Appl. Math. 66(1), 339–360 (2005)MathSciNetCrossRefGoogle Scholar
  25. Schuss, Z., Singer, A., Holcman, D.: The narrow escape problem for diffusion in cellular microdomains. Proc. Natl. Acad. Sci. 104(41), 16098–16103 (2007)CrossRefGoogle Scholar
  26. Singer, A., Schuss, Z., Holcman, D.: Narrow escape, part iii: non-smooth domains and Riemann surfaces. J. Stat. Phys. 122(3), 491–509 (2006)MathSciNetCrossRefGoogle Scholar
  27. Sokolov, I.M., Metzler, R., Pant, K., Williams, M.C.: First passage time of n excluded-volume particles on a line. Phys. Rev. E 72(4), 041102 (2005)CrossRefGoogle Scholar
  28. Taflia, A., Holcman, D.: Estimating the synaptic current in a multiconductance ampa receptor model. Biophys. J. 101(4), 781–792 (2011)CrossRefGoogle Scholar
  29. Volfovsky, N., Parnas, H., Segal, M., Korkotian, E.: Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J. Neurophysiol. 82(1), 450–462 (1999)CrossRefGoogle Scholar
  30. Yuste, S.B., Lindenberg, K.: Order statistics for first passage times in one-dimensional diffusion processes. J. Stat. Phys. 85(3), 501–512 (1996)MathSciNetCrossRefGoogle Scholar
  31. Yuste, S.B., Acedo, L., Lindenberg, K.: Order statistics for d-dimensional diffusion processes. Phys. Rev. E 64(5), 052102 (2001)CrossRefGoogle Scholar
  32. Zilman, A., Bel, G.: Crowding effects in non-equilibrium transport through nano-channels. J. Phys. Condens. Matter 22(45), 454130 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Mathematics and Computational BiologyEcole Normale SupérieureParisFrance
  2. 2.Department of Applied MathematicsTel-Aviv UniversityTel AvivIsrael

Personalised recommendations