Advertisement

Journal of Nonlinear Science

, Volume 29, Issue 1, pp 215–228 | Cite as

Weak and Strong Solutions of the 3D Navier–Stokes Equations and Their Relation to a Chessboard of Convergent Inverse Length Scales

  • J. D. GibbonEmail author
Article

Abstract

Using the scale invariance of the Navier–Stokes equations to define appropriate space-and-time-averaged inverse length scales associated with weak solutions of the 3D Navier–Stokes equations, on a periodic domain \(\mathcal {V} =[0,\,L]^{3}\) an infinite ‘chessboard’ of estimates for these inverse length scales is displayed in terms of labels \((n,\,m)\) corresponding to n derivatives of the velocity field in \(L^{2m}(\mathcal {V})\). The \((1,\,1)\) position corresponds to the inverse Kolmogorov length \(Re^{3/4}\). These estimates ultimately converge to a finite limit, \(Re^3\), as \(n,\,m\rightarrow \infty \), although this limit is too large to lie within the physical validity of the equations for realistically large Reynolds numbers. Moreover, all the known time-averaged estimates for weak solutions can be rolled into one single estimate, labelled by \((n,\,m)\). In contrast, those required for strong solutions to exist can be written in another single estimate, also labelled by \((n,\,m)\), the only difference being a factor of 2 in the exponent. This appears to be a generalization of the Prodi–Serrin conditions for \(n\ge 1\).

Keywords

Navier-stokes Length scales Weak and strong solutions 

Mathematics Subject Classification

76D03 76D05 35Q30 

Notes

Acknowledgements

My thanks go to Vlad Vicol of Princeton University for suggesting the method of proof of Theorem 2 and to Darryl Holm for discussions.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  2. Beale, J.T., Kato, T., Majda, A.J.: Remarks on the breakdown of smooth solutions for the \(3D\) Euler equations. Commun. Math. Phys. 94, 61–66 (1984)CrossRefzbMATHGoogle Scholar
  3. Benzi, R., Biferale, L.: Fully developed turbulence and the multifractal conjecture. J. Stat. Phys. 135, 977–990 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Constantin, P.: Remarks on the Navier-Stokes equations. In: Sirovich, L. (ed.) New Perspectives in Turbulence, pp. 229–261. Springer, Berlin (1991)CrossRefGoogle Scholar
  5. Constantin, P., Foias, C.: The Navier–Stokes Equations. Chicago University Press, Chicago (1988)zbMATHGoogle Scholar
  6. Doering, C.R., Foias, C.: Energy dissipation in body-forced turbulence. J. Fluid Mech. 467, 289–306 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Doering, C.R., Gibbon, J.D.: Bounds on moments of the energy spectrum for weak solutions of the \(3D\) Navier–Stokes equations. Physica D 165, 163–175 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Donzis, D., Yeung, P.K., Sreenivasan, K.: Dissipation and enstrophy in isotropic turbulence : scaling and resolution effects in direct numerical simulations. Phys. Fluids 20, 045108 (2008)CrossRefzbMATHGoogle Scholar
  9. Donzis, D.A., Gibbon, J.D., Gupta, A., Kerr, R.M., Pandit, R., Vincenzi, D.: Vorticity moments in four numerical simulations of the 3D Navier–Stokes equations. J. Fluid Mech. 732, 316–331 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Escauriaza, L., Seregin, G., Sverák, V.: \(L^{3}\)-solutions to the Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003)CrossRefGoogle Scholar
  11. Foias, C., Guillopé, C., Temam, R.: New a priori estimates for Navier–Stokes equations in dimension 3. Commun. Partial Diff. Equ. 6, 329–359 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  13. Frisch, U.: Turbulence : The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  14. Gibbon, J.D.: A hierarchy of length scales for solutions of the three-dimensional Navier–Stokes equations. Commun. Math. Sci. 10, 131–136 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Gibbon, J.D., Doering, C.R.: Applied Analysis of the Navier-Stokes Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  16. Gibbon, J.D., Donzis, D.A., Gupta, A., Kerr, R.M., Pandit, R., Vincenzi, D.: Regimes of nonlinear depletion and regularity in the 3D Navier–Stokes equations. Nonlinearity 27, 1–19 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Hopf, E.: Uber die anfang swetaufgabe für die hydrodynamischer grundgleichungan. Math. Nachr. 4, 213–231 (1951)MathSciNetCrossRefGoogle Scholar
  18. Ishihara, T., Gotoh, T., Kaneda, Y.: Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 16–180 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Kerr, R.M.: Dissipation, enstrophy statistics in turbulence: are the simulations, mathematics converging? J. Fluid Mech. 700, 1–4 (2012)CrossRefzbMATHGoogle Scholar
  20. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Lynch, P.: The Emergence of Numerical Weather Prediction : Richardson’s Dream. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  22. Mandelbrot, B.: Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331–358 (1974)CrossRefzbMATHGoogle Scholar
  23. Parisi, G., Frisch, U.: On the singularity structure of fully developed turbulence. In: Ghil, M., Benzi, R., Parisi, G. (eds.) Turbulence and Predictability in Geophysical Fluid Dynamics, Proceedings of the International School of Physics “E. Fermi”, pp. 84–87, North-Holland, Amsterdam (1985)Google Scholar
  24. Prodi, G.: Un teorema di unicit’a per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)zbMATHGoogle Scholar
  26. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-dimensional Navier-Stokes Equations : Classical Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  27. Roulstone, I., Norbury, J.: Invisible in the Storm : The Role of Mathematics in Understanding Weather. Princeton University Press, Princeton (2013)CrossRefzbMATHGoogle Scholar
  28. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–191 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Tartar, L.: Topics in Nonlinear Analysis. Publications Mathématiques d’Orsay, Université Paris-Sud, Orsay (1978)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsImperial College LondonLondonUK

Personalised recommendations