Advertisement

Journal of Nonlinear Science

, Volume 29, Issue 1, pp 139–162 | Cite as

Backward Parabolicity, Cross-Diffusion and Turing Instability

  • Ayman MoussaEmail author
  • Benoît Perthame
  • Delphine Salort
Article
  • 76 Downloads

Abstract

We show that the ill-posedness observed in backward parabolic equation, or cross-diffusion systems, can be interpreted as a limiting Turing instability for a corresponding semi-linear parabolic system. Our analysis is based on the, now well established, derivation of nonlinear parabolic and cross-diffusion systems from semi-linear reaction–diffusion systems with fast reaction rates. We illustrate our observation with two generic examples for \(2\times 2\) and \(4\times 4\) reaction–diffusion systems. For these examples, we prove that backward parabolicity in cross-diffusion systems is equivalent to Turing instability for fast reaction rates. In one dimension, the Turing patterns are periodic solutions which have frequencies which increase with the reaction rate. Furthermore, in some specific cases, the structure of the equations at hand involves classical entropy/Lyapunov functions which lead to a priori estimates allowing to pass rigorously to the fast reaction limit in the absence of Turing instabilities.

Keywords

Reaction–diffusion systems Cross-diffusion systems Turing instability Backward parabolic equations Mathematical biology Entropy Periodic solutions 

Mathematics Subject Classification

35B36 35B10 35K57 35Q92 

References

  1. Bendahmane, M., Lepoutre, T., Marrocco, A., Perthame, B.: Conservative cross diffusions and pattern formation through relaxation. J. Math. Pures Appl. 92, 651–667 (2009)MathSciNetzbMATHGoogle Scholar
  2. Bertsch, M., Smarrazzo, F., Tesei, A.: Pseudo-parabolic regularization of forward–backward parabolic equations: power-type nonlinearities. J. Reine Angew. Math. 712, 51–80 (2016)MathSciNetzbMATHGoogle Scholar
  3. Bolotin, S., MacKay, R.S.: Isochronous potential. In: Vázquez, L., MacKay, R.S., Zorzano, M.P. (eds.) Proceedings of the Third Conference: Localization and Energy Transfer in Nonlinear Systems, pp. 217–224. London (2003)Google Scholar
  4. Bothe, D., Hilhorst, D.: A reaction–diffusion system with fast reversible reaction. J. Math. Anal. Appl. 286, 125–135 (2003)MathSciNetzbMATHGoogle Scholar
  5. Bothe, D., Pierre, M., Rolland, G.: Cross-diffusion limit for a reaction–diffusion system with fast reversible reaction. Commun. Partial Differ. Equ. 37, 1940–1966 (2012)MathSciNetzbMATHGoogle Scholar
  6. Carillo, J.A., Hittmeier, S., Jüngel, A.: Cross diffusion and nonlinear diffusion preventing blow-up in the Keller–Segel model. Math. Models Methods Appl. Sci. 22, 1250041 (2012)MathSciNetzbMATHGoogle Scholar
  7. Desvillettes, L., Trescases, A.: New results for triangular reaction cross diffusion system. J. Math. Anal. Appl. 430, 32–59 (2015)MathSciNetzbMATHGoogle Scholar
  8. Evans, L.C., Portilheiro, M.: Irreversibility and hysteresis for a forward–backward diffusion equation. Math. Models Methods Appl. Sci. 14, 1599–1620 (2004)MathSciNetzbMATHGoogle Scholar
  9. Haselwandter, C.A., Kardar, M., Triller, A., da Silveira, R.A.: Self-assembly and plasticity of synaptic domains through a reaction–diffusion mechanism. Phys. Rev. E 92, 032705 (2015)MathSciNetGoogle Scholar
  10. Iida, M., Mimura, M., Ninomiya, H.: Diffusion, cross-diffusion and competitive interaction. J. Math. Biol. 53, 617–641 (2006)MathSciNetzbMATHGoogle Scholar
  11. Iron, D., Rumsey, J.: A model of cell surface receptor aggregation. J. Math. Biol. 75, 705–731 (2017)MathSciNetzbMATHGoogle Scholar
  12. Ishihara, S., Otsuji, M., Mochizuki, A.: Transient and steady state of mass-conserved reaction–diffusion systems. Phys. Rev. E 75, 015203 (2007)Google Scholar
  13. Izuhara, H., Mimura, M.: Reaction–diffusion system approximation to the cross-diffusion competition system. Hiroshima Math. J. 38, 315–347 (2008)MathSciNetzbMATHGoogle Scholar
  14. Lafitte, P., Mascia, C.: Numerical exploration of a forward–backward diffusion equation. Math. Models Methods Appl. Sci. 22, 1250004 (2012)MathSciNetzbMATHGoogle Scholar
  15. Morita, Y.: Spectrum comparison for a conserved reaction–diffusion system with a variational property. J. Appl. Anal. Comput. 2, 57–71 (2012)MathSciNetzbMATHGoogle Scholar
  16. Morita, Y., Ogawa, T.: Stability and bifurcation of nonconstant solutions to a reaction–diffusion system with conservation of mass. Nonlinearity 23, 1387–1411 (2010)MathSciNetzbMATHGoogle Scholar
  17. Morita, Y., Shinjo, N.: Reaction–diffusion models with a conservation law and pattern formations. Josai Math. Monogr. 9, 177–190 (2016)Google Scholar
  18. Novick-Cohen, A., Pego, R.L.: Stable patterns in a viscous diffusion equation. Trans. Am. Math. Soc. 324, 331–351 (1991)MathSciNetzbMATHGoogle Scholar
  19. Otsuji, M., Ishihara, S., Co, C., Kaibuchi, K., Mochizuki, A., Kuroda, S.: A mass conserved reaction–diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, 1–15 (2007)MathSciNetGoogle Scholar
  20. Perthame, B.: Parabolic Equations in Biology, Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham (2015)Google Scholar
  21. Plotnikov, P.I.: Forward–backward parabolic equations and hysteresis. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 233, 183–209, 257–258 (1996)Google Scholar
  22. Ranft, J., Almeida, L.G., Rodriguez, P.C., Triller, A., Hakim, V.: An aggregation-removal model for the formation and size determination of post-synaptic scaffold domains. PLoS Comput. Biol. 13, 1–18 (2017)Google Scholar
  23. Sakamoto, T.O.: Hopf bifurcation in a reaction–diffusion system with conservation of mass. Nonlinearity 26, 2027 (2013)MathSciNetzbMATHGoogle Scholar
  24. Sekimoto, K., Triller, A.: Compatibility between itinerant synaptic receptors and stable postsynaptic structure. Phys. Rev. E 79, 031905 (2009)Google Scholar
  25. Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol. 79, 83–89 (1979)MathSciNetGoogle Scholar
  26. Terracina, A.: Two-phase entropy solutions of forward–backward parabolic problems with unstable phase. Interfaces Free Bound. 17, 289–315 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ayman Moussa
    • 1
    Email author
  • Benoît Perthame
    • 2
  • Delphine Salort
    • 3
  1. 1.Sorbonne Université, Université Paris-Diderot, CNRS, Laboratoire Jacques-Louis LionsParisFrance
  2. 2.Sorbonne Université, Université Paris-Diderot, CNRS, INRIA, Laboratoire Jacques-Louis LionsParisFrance
  3. 3.Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, UMR 7238ParisFrance

Personalised recommendations