Advertisement

European Radiology

, Volume 30, Issue 1, pp 609–619 | Cite as

Compressed sensing real-time cine imaging for assessment of ventricular function, volumes and mass in clinical practice

  • Mathilde Vermersch
  • Benjamin Longère
  • Augustin Coisne
  • Michaela Schmidt
  • Christoph Forman
  • Aurélien Monnet
  • Julien Pagniez
  • Valentina Silvestri
  • Arianna Simeone
  • Emma Cheasty
  • David Montaigne
  • François PontanaEmail author
Cardiac
  • 116 Downloads

Abstract

Objectives

This study was conducted in order to evaluate the accuracy of a compressed sensing (CS) real-time single-breath-hold cine sequence for the assessment of left and right ventricular functional parameters in daily practice.

Methods

Cardiac magnetic resonance (CMR) cine images were acquired from 100 consecutive patients using both the reference segmented multi-breath-hold steady-state free precession (SSFP) acquisition and a prototype single-breath-hold real-time CS sequence, providing the same slice number, position, and thickness. For both sequences, the left (LV) and right ventricular (RV) ejection fractions (EF) and end-diastolic volumes (EDV) were assessed as well as LV mass (LVM). The visualization of wall-motion disorders (WMD) and signal void related to mitral or tricuspid regurgitation was also analyzed.

Results

The CS sequence mean scan time was 23 ± 6 versus 510 ± 109 s for the multi-breath-hold SSFP sequence (p < 0.001). There was an excellent correlation between the two sequences regarding mean LVEF (r = 0.995), LVEDV (r = 0.997), LVM (r = 0.981), RVEF (r = 0.979), and RVEDV (r = 0.983). Moreover, inter- and intraobserver agreements were very strong with intraclass correlations of 0.96 and 0.99, respectively. On CS images, mitral or tricuspid regurgitation visualization was good (AUC = 0.85 and 0.81, respectively; ROC curve analysis) and wall-motion disorder visualization was excellent (AUC ≥ 0.97).

Conclusion

CS real-time single-breath-hold cine imaging reduces CMR scan duration by almost 20 times in daily practice while providing reliable measurements of both left and right ventricles. There was no clinically relevant information loss regarding valve regurgitation and wall-motion disorder depiction.

Key Points

• Compressed sensing single-breath-hold real-time cine imaging is a reliable sequence in daily practice.

• Fast CS real-time imaging reduces CMR scan time and improves patient workflow.

• There is no clinically relevant information loss with CS regarding heart valve regurgitation or wall-motion disorders.

Keywords

Heart ventricles Magnetic resonance imaging Breath holding 

Abbreviations

ARVC

Arythmogenic right ventricular cardiomyopathy

CMR

Cardiac magnetic resonance

CS

Compressed sensing

ECG

Electrocardiogram

EDV

End-diastolic volume

EF

Ejection fraction

GPU

Graphic processing unit

LV/LVEF/LVEDV

Left ventricle/left ventricular EF/left ventricular EDV

LVM

Left ventricular mass

RV/RVEF/RVEDV

Right ventricle/right ventricular EF/right ventricular EDV

SD

Standard deviation

SSFP

Balanced steady-state free precession

WMD

Wall-motion disorders

Notes

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Francois Pontana.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: Mathilde Vermersch, Benjamin Longère, Augustin Coisne, Julien Pagniez, Valentina Silvestri, Arianna Simeone, Emma Cheasty, David Montaigne, and François Pontana have no competing interest. They are employed by an institution engaged in contractual collaboration with Siemens Healthcare. Michaela Schmidt, Christoph Forman, and Aurelien Monnet are employees of Siemens Healthcare GmbH.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all patients in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• cross-sectional study

• performed at one institution

Supplementary material

330_2019_6341_MOESM1_ESM.docx (40.6 mb)
ESM 1 (DOCX 41619 kb)

References

  1. 1.
    Pennell DJ, Sechtem UP, Higgins CB et al (2004) Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J 25:1940–1965.  https://doi.org/10.1016/j.ehj.2004.06.040 CrossRefPubMedGoogle Scholar
  2. 2.
    Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426.  https://doi.org/10.1080/10976640600572889 CrossRefPubMedGoogle Scholar
  3. 3.
    Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 27:2879–2888.  https://doi.org/10.1093/eurheartj/ehl336 CrossRefPubMedGoogle Scholar
  4. 4.
    Plein S, Bloomer TN, Ridgway JP et al (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14:230–236.  https://doi.org/10.1002/jmri.1178 CrossRefPubMedGoogle Scholar
  5. 5.
    Nacif MS, Zavodni A, Kawel N, Choi EY, Lima JA, Bluemke DA (2012) Cardiac magnetic resonance imaging and its electrocardiographs (ECG): tips and tricks. Int J Cardiovasc Imaging 28:1465–1475.  https://doi.org/10.1007/s10554-011-9957-4 CrossRefGoogle Scholar
  6. 6.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195.  https://doi.org/10.1002/mrm.21391 CrossRefGoogle Scholar
  7. 7.
    Vincenti G, Monney P, Chaptinel J et al (2014) Compressed sensing single-breath-hold CMR for fast quantification of LV function, volumes, and mass. JACC Cardiovasc Imaging 7:882–892.  https://doi.org/10.1016/j.jcmg.2014.04.016 CrossRefPubMedGoogle Scholar
  8. 8.
    Allen BD, Carr M, Botelho MP et al (2016) Highly accelerated cardiac MRI using iterative SENSE reconstruction: initial clinical experience. Int J Cardiovasc Imaging 32:955–963.  https://doi.org/10.1007/s10554-016-0859-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Bogachkov A, Ayache JB, Allen BD et al (2016) Right ventricular assessment at cardiac MRI: initial clinical experience utilizing an IS-SENSE reconstruction. Int J Cardiovasc Imaging 32:1081–1091.  https://doi.org/10.1007/s10554-016-0874-4 CrossRefPubMedGoogle Scholar
  10. 10.
    Camargo GC, Erthal F, Sabioni L et al (2017) Real-time cardiac magnetic resonance cine imaging with sparse sampling and iterative reconstruction for left-ventricular measures: comparison with gold-standard segmented steady-state free precession. Magn Reson Imaging 38:138–144.  https://doi.org/10.1016/j.mri.2017.01.002 CrossRefPubMedGoogle Scholar
  11. 11.
    Goebel J, Nensa F, Bomas B et al (2016) Real-time SPARSE-SENSE cardiac cine MR imaging: optimization of image reconstruction and sequence validation. Eur Radiol 26:4482–4489.  https://doi.org/10.1007/s00330-016-4301-y CrossRefPubMedGoogle Scholar
  12. 12.
    Haubenreisser H, Henzler T, Budjan J et al (2016) Right ventricular imaging in 25 seconds: evaluating the use of sparse sampling CINE with iterative reconstruction for volumetric analysis of the right ventricle. Invest Radiol 51:379–386.  https://doi.org/10.1097/RLI.0000000000000250 CrossRefPubMedGoogle Scholar
  13. 13.
    Goebel J, Nensa F, Schemuth HP et al (2016) Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function. J Magn Reson Imaging 44:366–374.  https://doi.org/10.1002/jmri.25162 CrossRefPubMedGoogle Scholar
  14. 14.
    Lin ACW, Strugnell W, Riley R et al (2017) Higher resolution cine imaging with compressed sensing for accelerated clinical left ventricular evaluation. J Magn Reson Imaging 45:1693–1699.  https://doi.org/10.1002/jmri.25525 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Baker C (2016) Investigation of sparsifying transforms in compressed sensing for magnetic resonance imaging with FastTestCS. Theses and Dissertation 1347, University of Wisconsin, MilwaukeeGoogle Scholar
  16. 16.
    Klinke V, Muzzarelli S, Lauriers N et al (2013) Quality assessment of cardiovascular magnetic resonance in the setting of the European CMR registry: description and validation of standardized criteria. J Cardiovasc Magn Reson 15:55–67.  https://doi.org/10.1186/1532-429X-15-55 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Larson AC, Kellman P, Arai A et al (2005) Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med 53:159–168.  https://doi.org/10.1002/mrm.20331 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wetzl J, Schmidt M, Pontana F et al (2017) Single-breath-hold 3-D CINE imaging of the left ventricle using Cartesian sampling. MAGMA.  https://doi.org/10.1007/s10334-017-0624-1 CrossRefGoogle Scholar
  19. 19.
    Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542.  https://doi.org/10.1161/hc0402.102975 CrossRefPubMedGoogle Scholar
  20. 20.
    Kido T, Kido T, Nakamura M et al (2016) Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson 18:50–60.  https://doi.org/10.1186/s12968-016-0271-0
  21. 21.
    Sudarski S, Henzler T, Haubenreisser H et al (2017) Free-breathing sparse sampling cine MR imaging with iterative reconstruction for the assessment of left ventricular function and mass at 3.0 T. Radiology 282:74–83.  https://doi.org/10.1148/radiol.2016151002 CrossRefPubMedGoogle Scholar
  22. 22.
    Kido T, Kido T, Nakamura M et al (2017) Assessment of left ventricular function and mass on free-breathing compressed sensing real-time cine imaging. Circ J 81:1463–1468.  https://doi.org/10.1253/circj.CJ-17-0123 CrossRefPubMedGoogle Scholar
  23. 23.
    Goebel J, Nensa F, Schemuth HP et al (2017) Real-time SPARSE-SENSE cine MR imaging in atrial fibrillation: a feasibility study. Acta Radiol 58:922–928.  https://doi.org/10.1177/0284185116681037 CrossRefPubMedGoogle Scholar
  24. 24.
    Semelka RC, Tomei E, Wagner S et al (1990) Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 174:763–768.  https://doi.org/10.1148/radiology.174.3.2305059 CrossRefPubMedGoogle Scholar
  25. 25.
    Gardner BI, Bingham SE, Allen MR, Blatter DD, Anderson JL (2009) Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. Cardiovasc Ultrasound 7:38–44.  https://doi.org/10.1186/1476-7120-7-38
  26. 26.
    Rösner A, Barbosa D, Aarsæther E, Kjønås D, Schirmer H, D'hooge J (2015) The influence of frame rate on two-dimensional speckle-tracking strain measurements: a study on silico-simulated models and images recorded in patients. Eur Heart J Cardiovasc Imaging 16:1137–1147.  https://doi.org/10.1093/ehjci/jev058 CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2019

Authors and Affiliations

  • Mathilde Vermersch
    • 1
  • Benjamin Longère
    • 1
  • Augustin Coisne
    • 2
    • 3
  • Michaela Schmidt
    • 4
  • Christoph Forman
    • 4
  • Aurélien Monnet
    • 4
  • Julien Pagniez
    • 1
  • Valentina Silvestri
    • 1
  • Arianna Simeone
    • 1
  • Emma Cheasty
    • 5
  • David Montaigne
    • 2
    • 3
  • François Pontana
    • 1
    • 3
    Email author
  1. 1.Department of Cardiovascular Radiology, Institut Cœur-PoumonCHU LilleLille CedexFrance
  2. 2.Department of Clinical Physiology and EchocardiographyCHU LilleLilleFrance
  3. 3.INSERM UMR 1011; Institut Pasteur de Lille; EGID (European Genomic Institute for Diabetes), FR3508; Univ LilleLilleFrance
  4. 4.Siemens Healthcare GmbHErlangenGermany
  5. 5.Department of Cardiovascular ImagingSt Bartholomew’s HospitalLondonUK

Personalised recommendations