Advertisement

Differences of radiocarpal cartilage alterations in arthritis and osteoarthritis using morphological and biochemical magnetic resonance imaging without gadolinium-based contrast agent administration

  • Valentina Mori
  • Lino M. SawickiEmail author
  • Philipp Sewerin
  • Markus Eichner
  • Benedikt M. Schaarschmidt
  • Lisa Oezel
  • Sebastian Gehrmann
  • Bernd Bittersohl
  • Gerald Antoch
  • Christoph Schleich
Musculoskeletal

Abstract

Objectives

To identify differences of radiocarpal cartilage alterations in osteoarthritis and arthritis using multiparametrical magnetic resonance imaging (MRI) comprising morphological and biochemical sequences without gadolinium-based contrast agent administration.

Methods

In this prospective study, multiparametrical MRI of the radiocarpal cartilage was performed in 47 participants (mean age, 46.6 ± 17.6 years; min., 20 years; max., 79 years) on a 3 Tesla MRI. The cohort consisted of 11 patients suffering from arthritis, 10 patients with osteoarthritis, 14 patients after distal radius fracture, and 12 healthy volunteers. The radiocarpal cartilage was assessed using morphological (DESS, TrueFISP) and biochemical (T2*) MRI sequences without the application of intravenous contrast agent. The modified Outerbridge classification system for morphological and region-of-interest analyses for biochemical analysis was applied to assess the degree of cartilage damage in each patient before data were statistically tested for significant difference between the groups using a post hoc Tukey test.

Results

In morphological imaging, cartilage damage was significantly more frequent in arthritis and osteoarthritis than in healthy volunteers (DESS: p = 0.01, p = 0.0004; TrueFISP: p = 0.02, p = 0.0001). In T2* imaging, patients with osteoarthritis showed higher cartilage damage compared to patients with arthritis (p = 0.01).

Conclusion

With multiparametrical MRI, it is possible to identify differences of radiocarpal cartilage alterations of patients with arthritis and osteoarthritis using the combination of morphological and biochemical MR imaging of the radiocarpal cartilage without the application of contrast agent. Multiparametrical MRI without the usage of contrast agent may be a potential tool helping to distinguish both entities.

Key Points

• Multiparametrical MRI with morphological and biochemical sequences allows the differentiation of patients with arthritis and osteoarthritis.

• High-resolution MRI of radiocarpal cartilage is possible without administration of contrast agent.

Keywords

Morphological and cartilage MR imaging Without gadolinium-based contrast agent Arthritis Osteoarthritis Radiocarpal cartilage 

Abbreviations

ANOVA

Analysis of variance

CI

Confidence interval

DESS

Double echo steady state

DGEMRIC

Delayed gadolinium-enhanced MRI of cartilage

DRF

Distal radius fracture

DWI

Diffusion-weighted imaging

EMA

European Medicines Agency

GagCEST

Glycosaminoglycan chemical exchange saturation transfer

ICC

Intraclass correlation coefficient

LC

Central lunate

LP

Peripheral lunate

MRI

Magnetic resonance imaging

OA

Osteoarthritis

PD

Proton density

RA

Rheumatoid arthritis

ROI

Region-of-interest

SC

Central scaphoid

SP

Peripheral scaphoid

STARD

Standards for reporting of diagnostic accuracy studies

TNF-α

Tumor necrosis factor α

TRUFI

True fast imaging with steady state precession

Notes

Acknowledgements

We would like to thank Erika Rädisch for the assistance in receiving the MRI scans.

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is PD Dr. med. Christoph Schleich.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all patients in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• diagnostic study

• performed at one institution

References

  1. 1.
    Rehnitz C, Kuni B, Wuennemann F et al (2017) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping of talar osteochondral lesions: indicators of clinical outcomes. J Magn Reson Imaging 46:1601–1610CrossRefGoogle Scholar
  2. 2.
    Haims AH, Moore AE, Schweitzer ME et al (2004) MRI in the diagnosis of cartilage injury in the wrist. AJR Am J Roentgenol 182:1267–1270CrossRefGoogle Scholar
  3. 3.
    Strickland CD, Kijowski R (2011) Morphologic imaging of articular cartilage. Magn Reson Imaging Clin N Am 19:229–248CrossRefGoogle Scholar
  4. 4.
    Hayter CL, Gold SL, Potter HG (2013) Magnetic resonance imaging of the wrist: bone and cartilage injury. J Magn Reson Imaging 37:1005–1019CrossRefGoogle Scholar
  5. 5.
    Kouri T, Saario R, Merilahti-Palo R, Söderström KO (1987) Simplified distinction of rheumatoid synovial histopathology from that of degenerative joint diseases. Clin Rheumatol 6:98–100Google Scholar
  6. 6.
    Ehrlich GE (2001) Erosive osteoarthritis: presentation, clinical pearls, and therapy. Curr Rheumatol Rep 3:484–488CrossRefGoogle Scholar
  7. 7.
    Schneider M, Lelgemann M, Abholz H-H et al (2011) DGRh-Leitlinie: management der frühen rheumatoiden arthritis. Springer Verlag, Berlin, HeidelbergGoogle Scholar
  8. 8.
    Chhabra A, Soldatos T, Thawait GK et al (2012) Current perspectives on the advantages of 3-T MR imaging of the wrist. Radiographics 32:879–896CrossRefGoogle Scholar
  9. 9.
    Oneson SR, Scales LM, Erickson SJ, Timins ME (1996) MR imaging of the painful wrist. Radiographics 16:997–1008CrossRefGoogle Scholar
  10. 10.
    Rehnitz C, Klaan B, von Stillfried F et al (2016) Comparison of modern 3D and 2D MR imaging sequences of the wrist at 3 Tesla. Rofo 188:753–762CrossRefGoogle Scholar
  11. 11.
    Abraham CL, Bangerter NK, McGavin LS et al (2015) Accuracy of 3D dual echo steady state (DESS) MR arthrography to quantify acetabular cartilage thickness. J Magn Reson Imaging 42:1329–1338CrossRefGoogle Scholar
  12. 12.
    Schleich C, Hesper T, Hosalkar HS et al (2017) 3D double-echo steady-state sequence assessment of hip joint cartilage and labrum at 3 Tesla: comparative analysis of magnetic resonance imaging and intraoperative data. Eur Radiol 27:4360–4371CrossRefGoogle Scholar
  13. 13.
    Miese FR, Ostendorf B, Wittsack HJ et al (2010) Metacarpophalangeal joints in rheumatoid arthritis: delayed gadolinium-enhanced MR imaging of cartilage--a feasibility study. Radiology 257:441–447CrossRefGoogle Scholar
  14. 14.
    Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D (2016) Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 58:433–441CrossRefGoogle Scholar
  15. 15.
    Fingerhut S, Sperling M, Holling M et al (2018) Gadolinium-based contrast agents induce gadolinium deposits in cerebral vessel walls, while the neuropil is not affected: an autopsy study. Acta Neuropathol.  https://doi.org/10.1007/s00401-018-1857-4
  16. 16.
    Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16:564–570CrossRefGoogle Scholar
  17. 17.
    Rehnitz C, Kupfer J, Streich NA et al (2014) Comparison of biochemical cartilage imaging techniques at 3 T MRI. Osteoarthritis Cartilage 22:1732–1742CrossRefGoogle Scholar
  18. 18.
    Welsch GH, Trattnig S, Paternostro-Sluga T et al (2011) Parametric T2 and T2* mapping techniques to visualize intervertebral disc degeneration in patients with low back pain: initial results on the clinical use of 3.0 Tesla MRI. Skeletal Radiol 40:543–551CrossRefGoogle Scholar
  19. 19.
    Schleich C, Müller-Lutz A, Blum K et al (2016) Facet tropism and facet joint orientation: risk factors for the development of early biochemical alterations of lumbar intervertebral discs. Osteoarthritis Cartilage 24:1761–1768Google Scholar
  20. 20.
    Hesper T, Hosalkar HS, Bittersohl D et al (2014) T2* mapping for articular cartilage assessment: principles, current applications, and future prospects. Skeletal Radiol 43:1429–1445CrossRefGoogle Scholar
  21. 21.
    Hesper T, Neugroda C, Schleich C et al (2017) T2*-mapping of acetabular cartilage in patients with femoroacetabular impingement at 3 Tesla: comparative analysis with arthroscopic findings. Cartilage.  https://doi.org/10.1177/1947603517741168:1947603517741168
  22. 22.
    Holstein A, Zilkens C, Bittersohl B et al (2011) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and morphologic MRI of cartilage in the long-term follow-up after Legg-Calve-Perthes disease (LCPD). J Med Imaging Radiat Oncol 55:259–265CrossRefGoogle Scholar
  23. 23.
    Bittersohl B, Miese FR, Hosalkar HS et al (2012) T2* mapping of hip joint cartilage in various histological grades of degeneration. Osteoarthritis Cartilage 20:653–660CrossRefGoogle Scholar
  24. 24.
    Ehrlich GE (2003) Osteoarthritis beginning with inflammation. Definitions and correlations. Bull World Health Organ 81:691–693PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ochman S, Wieskötter B, Langer M, Vieth V, Raschke MJ, Stehling C (2017) High-resolution MRI (3T-MRI) in diagnosis of wrist pain: is diagnostic arthroscopy still necessary? Arch Orthop Trauma Surg 137:1443–1450Google Scholar
  26. 26.
    Chang AL, Yu HJ, von Borstel D et al (2017) Advanced imaging techniques of the wrist. AJR Am J Roentgenol 209:497–510CrossRefGoogle Scholar
  27. 27.
    Hara T, Horii E, An KN, Cooney WP, Linscheid RL, Chao EY (1992) Force distribution across wrist joint: application of pressure-sensitive conductive rubber. J Hand Surg Am 17:339–347Google Scholar
  28. 28.
    Medved F, Gonser P, Lotter O, Albrecht D, Amr A, Schaller HE (2013) Severe posttraumatic radiocarpal cartilage damage: first report of autologous chondrocyte implantation. Arch Orthop Trauma Surg 133:1469–1475CrossRefGoogle Scholar
  29. 29.
    Bittersohl B, Hosalkar HS, Hughes T et al (2009) Feasibility of T2* mapping for the evaluation of hip joint cartilage at 1.5T using a three-dimensional (3D), gradient-echo (GRE) sequence: a prospective study. Magn Reson Med 62:896–901CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Valentina Mori
    • 1
  • Lino M. Sawicki
    • 1
    Email author return OK on get
  • Philipp Sewerin
    • 2
  • Markus Eichner
    • 1
  • Benedikt M. Schaarschmidt
    • 1
  • Lisa Oezel
    • 3
  • Sebastian Gehrmann
    • 3
  • Bernd Bittersohl
    • 4
  • Gerald Antoch
    • 1
  • Christoph Schleich
    • 1
  1. 1.Department of Diagnostic and Interventional Radiology, Medical FacultyUniversity of DüsseldorfDüsseldorfGermany
  2. 2.Department and Hiller-Research-Unit for Rheumatology, UKDHeinrich Heine University DüsseldorfDüsseldorfGermany
  3. 3.Department of Trauma and Hand SurgeryUniversity HospitalDüsseldorfGermany
  4. 4.Department of Orthopedics, Medical FacultyUniversity of DüsseldorfDüsseldorfGermany

Personalised recommendations