Advertisement

European Radiology

, Volume 29, Issue 3, pp 1565–1573 | Cite as

Correlation of native T1 mapping with right ventricular function and pulmonary haemodynamics in patients with chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty

  • F. C. RollerEmail author
  • S. Kriechbaum
  • A. Breithecker
  • C. Liebetrau
  • M. Haas
  • C. Schneider
  • A. Rolf
  • S. Guth
  • E. Mayer
  • C. Hamm
  • G. A. Krombach
  • C. B. Wiedenroth
Cardiac

Abstract

Objectives

The aim of this study was to assess native T1 mapping in patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH) before and 6 months after balloon pulmonary angioplasty (BPA) and compare the results with right heart function and pulmonary haemodynamics.

Methods

Magnetic resonance imaging at 1.5 T and right heart catheterisation were performed in 21 consecutive inoperable CTEPH patients before and 6 months after BPA. T1 values were measured within the septal myocardium, the upper and lower right ventricular insertion points, and the lateral wall at the basal short-axis section. In addition, the area-adjusted septal native T1 time (AA-T1) was calculated and compared with right ventricular function (RVEF), mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR).

Results

The mean AA-T1 value decreased significantly after BPA (1,045.8 ± 44.3 ms to 1,012.5 ± 50.4 ms; p < 0.001). Before BPA, native T1 values showed a moderate negative correlation with RVEF (r = -0.61; p = 0.0036) and moderate positive correlations with mPAP (r = 0.59; p < 0.01) and PVR (r = 0.53; p < 0.05); after BPA correlation trends were present (r = -0.21, r = 0.30 and r = 0.35, respectively).

Conclusions

Native T1 values in patients with inoperable CTEPH were significantly lower after BPA and showed significant correlations with RVEF and pulmonary haemodynamics before BPA. Native T1 mapping seems to be indicative of reverse myocardial tissue remodelling after BPA and might therefore have good potential for pre-procedural patient selection, non-invasive therapy monitoring and establishing a prognosis.

Key Points

• BPA is a promising treatment option for patients with inoperable CTEPH

• Native septal T1 values significantly decrease after BPA and show good correlations with right ventricular function and haemodynamics before BPA

• Prognosis and non-invasive therapy monitoring might be supported in the future by native T1 mapping

Keywords

Magnetic resonance imaging Pulmonary hypertension Pulmonary embolism Angioplasty 

Abbreviations

AA-T1

Area-adjusted native T1 time

BPA

Balloon pulmonary angioplasty

CMR

Cardiac magnetic resonance imaging

CTEPH

Chronic thromboembolic pulmonary hypertension

EDD

End-diastolic diameter

EDV

End-diastolic volume

EF

Ejection fraction

ESD

End-systolic diameter

ESV

End-systolic volume

LV

Left ventricle

mPAP

Mean pulmonary arterial pressure

PA

Pulmonary artery

PEA

Pulmonary endarterectomy

PH

Pulmonary hypertension

PVR

Pulmonary vascular resistance

RVEF

Right ventricular function

RVIP

Right ventricular insertion point

RV

Right ventricle

SV

Stroke volume

Notes

Acknowledgements

We are grateful to Elizabeth Martinson, PhD, from the KHFI Editorial Office for her editorial assistance.

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Prof. Dr. Gabriele A. Krombach.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional review board approval was obtained.

Methodology

• prospective

• prognostic study/observational/experimental

• performed at one institution

References

  1. 1.
    Hoeper MM, Bogaard HJ, Condliffe R et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62:42–50CrossRefGoogle Scholar
  2. 2.
    Simonneau G, Gatzoulis MA, Adatia I et al (2013) Updated Clinical Classification of Pulmonary Hypertension. J Am Coll Cardiol 62:34–41CrossRefGoogle Scholar
  3. 3.
    Pepke-Zaba J, Delcroix M, Lang I et al (2011) Chronic thromboembolic pulmonary hypertension (CTEPH). Results from an international prospective registry. Circulation 124:1973–1981Google Scholar
  4. 4.
    Becattini C, Agnelli G, Pesavento R et al (2006) Incidence of chronic thromboembolic pulmonary hypertension after a first episode of pulmonary embolism. Chest 130:172–175CrossRefGoogle Scholar
  5. 5.
    Pengo V, Lensing AW, Prins MH et al (2004) Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 350:2257–2264CrossRefGoogle Scholar
  6. 6.
    Klok FA, van Kralingen KW, van Dijk AP, Heyning FH, Vliegen HW, Huisman MV (2010) Prospective cardiopulmonary screening program to detect chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Haematologica 95:970–975CrossRefGoogle Scholar
  7. 7.
    Berghaus TM, Barac M, von Scheidt W, Schwaiblmair M (2011) Echocardiographic evaluation for pulmonary hypertension after recurrent pulmonary embolism. Thromb Res 128:e142–e147CrossRefGoogle Scholar
  8. 8.
    Galiè N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119CrossRefGoogle Scholar
  9. 9.
    Lang IM, Pesavento R, Bonderman D, Yuan JX (2013) Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding. Eur Respir J 41:462–468CrossRefGoogle Scholar
  10. 10.
    Matthews DT, Hemnes AR (2016) Current concepts in the pathogenesis of chronic thromboembolic pulmonary hypertension. Pulm Circ 6:145–154CrossRefGoogle Scholar
  11. 11.
    Riedel M, Stanek V, Widimsky J, Prerovsky I (1982) Longterm follow-up of patients with pulmonary thromboembolism: late prognosis and evolution of hemodynamic and respiratory data. Chest 81:151–158CrossRefGoogle Scholar
  12. 12.
    Lewczuk J, Piszko P, Jagas J et al (2001) Prognostic factors in medically treated patients with chronic pulmonary embolism. Chest 119:818–823CrossRefGoogle Scholar
  13. 13.
    Simonneau G, Robbins IM, Beghetti M et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:43–54CrossRefGoogle Scholar
  14. 14.
    Mayer E, Jenkins D, Lindner J et al (2011) Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg 141:702–710CrossRefGoogle Scholar
  15. 15.
    Lankeit M, Krieg V, Hobohm L et al (2017) Pulmonary endarterectomy in chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant.  https://doi.org/10.1016/j.healun.2017.06.011
  16. 16.
    Wirth G, Brüggemann K, Bostel T, Mayer E, Düber C, Kreitner KF (2014) Chronic thromboembolic pulmonary hypertension (CTEPH)—potential role of multidetector-row CT (MD-CT) and MR imaging in the diagnosis and differential diagnosis of the disease. Rofo 186:751–761CrossRefGoogle Scholar
  17. 17.
    Ghofrani HA, D'Armini AM, Grimminger F et al (2013) CHEST-1 Study Group. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 369:319–329CrossRefGoogle Scholar
  18. 18.
    Simonneau G, D'Armini AM, Ghofrani HA et al (2015) Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2). Eur Respir J 45:1293–1302CrossRefGoogle Scholar
  19. 19.
    Simonneau G, D'Armini AM, Ghofrani HA et al (2016) Predictors of long-term outcomes in patients treated with riociguat for chronic thromboembolic pulmonary hypertension: data from the CHEST-2 open-label, randomised, long-term extension trial. Lancet Respir Med 4:372–380CrossRefGoogle Scholar
  20. 20.
    Olsson KM, Wiedenroth CB, Kamp JC et al (2017) Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: the initial German experience. Eur Resp J 49:6CrossRefGoogle Scholar
  21. 21.
    Muller DW, Liebetrau C (2016) Percutaneous treatment of chronic thromboembolic pulmonary hypertension (CTEPH). EuroIntervention 12:X35–X43CrossRefGoogle Scholar
  22. 22.
    Kreitner KF, Ley S, Kauczor HU et al (2004) Chronic thromboembolic pulmonary hypertension: Pre- and postoperative assessment with breath-hold MR imaging techniques. Radiology 232:535–554CrossRefGoogle Scholar
  23. 23.
    Rolf A, Rixe J, Kim WK et al (2014) Right ventricular adaptation to pulmonary pressure load in patients with chronic thromboembolic pulmonary hypertension before and after successful pulmonary endarterectomy--a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:96CrossRefGoogle Scholar
  24. 24.
    van Wolferen SA, Marcus JT, Boonstra A et al (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28:1250–1257CrossRefGoogle Scholar
  25. 25.
    Sato H, Ota H, Sugimura K et al (2016) Balloon pulmonary angioplasty improves biventricular functions and pulmonary flow in chronic thromboembolic pulmonary hypertension. Circ J 80:1470–1477CrossRefGoogle Scholar
  26. 26.
    Yamasaki Y, Nagao M, Abe K et al (2017) Balloon pulmonary angioplasty improves interventricular dyssynchrony in patients with inoperable chronic thromboembolic pulmonary hypertension: a cardiac MR imaging study. Int J Cardiovasc Imaging 33:229–239CrossRefGoogle Scholar
  27. 27.
    Bull S, White SK, Piechnik SK et al (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932–937CrossRefGoogle Scholar
  28. 28.
    Lee SP, Lee W, Lee JM et al (2015) Assessment of diffuse myocardial fibrosis by using MR imaging in asymptomatic patients with aortic stenosis. Radiology 274:359–369CrossRefGoogle Scholar
  29. 29.
    Dass S, Suttie JJ, Piechnik SK et al (2012) Myocardial tissue characterization using magnetic resonance non contrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 6:726–733CrossRefGoogle Scholar
  30. 30.
    Bandula S, White SK, Flett AS et al (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269:396–403CrossRefGoogle Scholar
  31. 31.
    Reiter U, Reiter G, Kovacs G et al (2017) Native myocardial T1 mapping in pulmonary hypertension: correlations with cardiac function and hemodynamics. Eur Radiol 27:157–166CrossRefGoogle Scholar
  32. 32.
    Roller FC, Wiedenroth C, Breithecker A et al (2017) Native T1 mapping and extracellular volume fraction measurement for assessment of right ventricular insertion point and septal fibrosis in chronic thromboembolic pulmonary hypertension. Eur Radiol 27:1980–1991CrossRefGoogle Scholar
  33. 33.
    Spruijt OA, Vissers L, Boogard HJ, Hofmann MB, Vonk-Noordegraaf A, Marcus JT (2016) Increased native T1-values at the interventricular insertion regions in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 32:451–459CrossRefGoogle Scholar
  34. 34.
    García-Álvarez A, García-Lunar I, Pereda D et al (2015) Association of myocardial T1-mapping CMR with hemodynamics and RV performance in pulmonary hypertension. JACC Cardiovasc Imaging 8:76–82CrossRefGoogle Scholar
  35. 35.
    Kriechbaum SD, Wiedenroth CB, Wolter JS et al (2017) N-terminal pro-B-type natriuretic peptide for monitoring after balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant.  https://doi.org/10.1016/j.healun.2017.12.006
  36. 36.
    Wiedenroth CB, Olsson KM, Guth S et al (2017) Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic disease. Pulm Circ.  https://doi.org/10.1177/2045893217753122
  37. 37.
    Roller FC, Harth S, Schneider C, Krombach GA (2015) T1, T2 mapping and extracellular volume fraction (ECV): application, value and further perspectives in myocardial inflammation and cardiomyopathies. Rofo 187:760–770CrossRefGoogle Scholar
  38. 38.
    Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping inthe myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63CrossRefGoogle Scholar
  39. 39.
    Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin, BostonGoogle Scholar
  40. 40.
    Aoki T, Sugimura K, Tatebe S et al (2017) Comprehensive evaluation of the effectiveness and safety of balloon pulmonary angioplasty for inoperable chronic thrombo-embolic pulmonary hypertension: long-term effects and procedure-related complications. Eur Heart J 38:3152-3159Google Scholar
  41. 41.
    Sanz J, Dellegrottaglie S, Kariisa M et al (2007) Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol 100:731–735CrossRefGoogle Scholar
  42. 42.
    McCann GP, Beek AM, Vonk-Noordegraaf A, van Rossum AC (2005) Delayed contrast-enhanced magnetic resonance imaging in pulmonary arterial hypertension. Circulation 112:e268CrossRefGoogle Scholar
  43. 43.
    Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985CrossRefGoogle Scholar
  44. 44.
    O’Hanlon R, Grasso A, Roughton M et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56:867–874CrossRefGoogle Scholar
  45. 45.
    Barone-Rochette G, Piérard S, De Meester de Ravenstein C et al (2014) Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol 64:144–154CrossRefGoogle Scholar
  46. 46.
    Krittayaphong R, Saiviroonporn P, Boonyasirinant T, Udompunturak S (2011) Prevalence and prognosis of myocardial scar in patients with known or suspected coronary artery disease and normal wall motion. J Cardiovasc Magn Reson 13:2CrossRefGoogle Scholar
  47. 47.
    Moon JC, Reed E, Sheppard MN et al (2004) The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 43:2260–2264CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • F. C. Roller
    • 1
    Email author
  • S. Kriechbaum
    • 2
    • 3
  • A. Breithecker
    • 1
  • C. Liebetrau
    • 2
    • 3
    • 5
  • M. Haas
    • 2
    • 3
  • C. Schneider
    • 1
  • A. Rolf
    • 2
    • 3
    • 5
  • S. Guth
    • 4
  • E. Mayer
    • 4
  • C. Hamm
    • 2
    • 3
    • 5
  • G. A. Krombach
    • 1
  • C. B. Wiedenroth
    • 4
  1. 1.Department of Diagnostic and Interventional RadiologyJustus-Liebig-University GiessenGiessenGermany
  2. 2.Department of CardiologyKerckhoff Heart and Thorax CentreBad NauheimGermany
  3. 3.DZHK (German Centre for Cardiovascular Research)Frankfurt am MainGermany
  4. 4.Department of Thoracic SurgeryKerckhoff Heart and Thorax CentreBad NauheimGermany
  5. 5.Department of CardiologyJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations