Advertisement

European Radiology

, Volume 29, Issue 2, pp 770–782 | Cite as

The spectrum of brainstem malformations associated to mutations of the tubulin genes family: MRI and DTI analysis

  • Filippo ArrigoniEmail author
  • Romina Romaniello
  • Denis Peruzzo
  • Andrea Poretti
  • Maria Teresa Bassi
  • Carlo Pierpaoli
  • Enza Maria Valente
  • Sara Nuovo
  • Eugen Boltshauser
  • Thierry André Gerard Marie Huisman
  • Fabio Triulzi
  • Renato Borgatti
Neuro
  • 258 Downloads

Abstract

Objectives

To describe the spectrum of brainstem malformations associated to mutations in the tubulin genes taking advantage of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI).

Methods

Fifteen patients (six males; median age, 1.25 years; range, 1 month to 31 years) with mutations in the tubulin genes (TUBA1A = 8, TUBB2B = 4, TUBB3 = 3) studied with MRI and DTI were included in the study. Brain MR exams were reviewed to describe the malformative aspects of the brainstem. Malformations of the supratentorial brain and cerebellum were also recorded. Tractography was performed in seven selected cases.

Results

Fourteen patients (93%) showed complex malformations of the brainstem. Most common findings, apparent on anatomical MR sequences, were brainstem asymmetry (12 cases, 5 of which with a crossed pattern characterised by a hypertrophic right medulla oblongata and hypertrophic left pons), short and small pons on midline (10 cases) and anterior brainstem clefting (6 cases). DTI revealed abnormal transverse pontine fibres (13 cases), fusion of corticospinal tracts and medial lemnisci (9 cases) and a small decussation of the superior cerebellar peduncles (7 cases).

Conclusions

Conventional/anatomical MRI and DTI reveal a complex pattern of brainstem malformations associated with tubulin genes mutations.

Key Points

• Brainstem malformations affect 93% patients with mutated tubulin genes

• MRI shows homolateral and crossed brainstem asymmetries, clefts and pons hypoplasia

• DTI demonstrates irregular representation of transverse pontine fibres and fusion of corticospinal tracts

Keywords

Nervous system malformations Brain stem Tubulin Diffusion tensor imaging Neurological rehabilitation 

Abbreviations

CST

Cortico-spinal tract

DEC

Directionally encoded colour

DMJD

Diencephalic-mesencephalic junction dysplasia

DTI

Diffusion tensor imaging

FA

Fractional anisotropy

HARDI

High angular resolution diffusion imaging

HGPPS

Horizontal gaze palsy and progressive scoliosis

MD

Mean diffusivity

PTCD

Pontine tegmental cap dysplasia

TPF

Transverse pontine fibres

Notes

Acknowledgements

This paper is dedicated to the memory of our dear friend and colleague, Andrea Poretti, an incredibly gifted and talented clinician, scientist and teacher who worked with us on the manuscript before his untimely demise. He will be in our memories forever.

We would like to thank Amritha Nayak for help in preparing Fig. 3.

Funding

This study has received funding by the European Research Council (ERC Starting Grant 260888), the Pierfranco and Luisa Mariani Foundation (PADAPORT project) and the Italian Ministry of Health (Ricerca Corrente 2015-2016, Ricerca Finalizzata 2013 NET-2013-02356160, 5X MILLE fundings).

Compliance with ethical standards:

Guarantor

The scientific guarantor of this publication is Dr. Filippo Arrigoni.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported in Romaniello R et al. (2017) Tubulin-related cerebellar dysplasia: definition of a distinct pattern of cerebellar malformation. Eur Radiol 27:5080-5092.

Methodology

• retrospective

• cross-sectional

• multicentre study

Supplementary material

330_2018_5610_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)

References

  1. 1.
    Bahi-Buisson N, Cavallin M (2016) Tubulinopathies Overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews. University of Washington, SeattleGoogle Scholar
  2. 2.
    Romaniello R, Arrigoni F, Cavallini A et al (2014) Brain malformations and mutations in α- and β-tubulin genes: A review of the literature and description of two new cases. Dev Med Child Neurol 56:354–360.  https://doi.org/10.1111/dmcn.12370 CrossRefGoogle Scholar
  3. 3.
    Chakraborti S, Natarajan K, Curiel J et al (2016) The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton (Hoboken) 73:521–550.  https://doi.org/10.1002/cm.21290 CrossRefGoogle Scholar
  4. 4.
    Tischfield MA, Baris HN, Wu C et al (2010) Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140:74–87.  https://doi.org/10.1016/j.cell.2009.12.011 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Poirier K, Saillour Y, Bahi-buisson N et al (2010) Mutations in the neuronal b-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet 19:4462–4473.  https://doi.org/10.1093/hmg/ddq377 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jaglin XH, Chelly J (2009) Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 25:555–566.  https://doi.org/10.1016/j.tig.2009.10.003 CrossRefGoogle Scholar
  7. 7.
    Tischfield MA, Cederquist GY, Gupta MLJ, Engle EC (2011) Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations. Curr Opin Genet Dev 21:286–294.  https://doi.org/10.1016/j.gde.2011.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bahi-Buisson N, Poirier K, Fourniol F et al (2014) The wide spectrum of tubulinopathies: What are the key features for the diagnosis? Brain 137:1676–1700.  https://doi.org/10.1093/brain/awu082 CrossRefGoogle Scholar
  9. 9.
    Romaniello R, Arrigoni F, Bassi MT, Borgatti R (2015) Mutations in α- and β-tubulin encoding genes: Implications in brain malformations. Brain Dev 37:273–280.  https://doi.org/10.1016/j.braindev.2014.06.002 CrossRefGoogle Scholar
  10. 10.
    Simons C, Wolf NI, McNeil N et al (2013) A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet 92:767–773.  https://doi.org/10.1016/j.ajhg.2013.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tonduti D, Aiello C, Renaldo F et al (2016) TUBB4A-related hypomyelinating leukodystrophy: New insights from a series of 12 patients. Eur J Paediatr Neurol 20:323–330.  https://doi.org/10.1016/j.ejpn.2015.11.006 CrossRefGoogle Scholar
  12. 12.
    Mutch CA, Poduri A, Sahin M et al (2016) Disorders of microtubule function in neurons: imaging correlates. AJNR Am J Neuroradiol 37:528–535.  https://doi.org/10.3174/ajnr.A4552 CrossRefGoogle Scholar
  13. 13.
    Oegema R, Cushion TD, Phelps IG et al (2015) Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes. Hum Mol Genet 24:5313–5325.  https://doi.org/10.1093/hmg/ddv250 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Romaniello R, Arrigoni F, Panzeri E et al (2017) Erratum to: Tubulin-related cerebellar dysplasia: definition of a distinct pattern of cerebellar malformation. Eur Radiol 27:5093.  https://doi.org/10.1007/s00330-017-4986-6 CrossRefGoogle Scholar
  15. 15.
    Romaniello R, Tonelli A, Arrigoni F et al (2012) A novel mutation in the β-tubulin gene TUBB2B associated with complex malformation of cortical development and deficits in axonal guidance. Dev Med Child Neurol 54:765–769.  https://doi.org/10.1111/j.1469-8749.2012.04316.x CrossRefGoogle Scholar
  16. 16.
    Kamiya K, Tanaka F, Ikeno M et al (2014) DTI tractography of lissencephaly caused by TUBA1A mutation. Neurol Sci 35:801–803.  https://doi.org/10.1007/s10072-014-1662-3 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Poretti A, Meoded A, Rossi A et al (2013) Diffusion tensor imaging and fiber tractography in brain malformations. Pediatr Radiol 43:28–54.  https://doi.org/10.1007/s00247-012-2428-9 CrossRefGoogle Scholar
  18. 18.
    Poretti A, Boltshauser E, Loenneker T et al (2007) Diffusion tensor imaging in Joubert syndrome. AJNR Am J Neuroradiol 28:1929–1933.  https://doi.org/10.3174/ajnr.A0703 CrossRefGoogle Scholar
  19. 19.
    Arrigoni F, Romaniello R, Peruzzo D et al (2017) Anterior mesencephalic cap dysplasia: novel brain stem malformative features associated with Joubert syndrome. AJNR Am J Neuroradiol 38:2385–2390.  https://doi.org/10.3174/ajnr.A5360 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sicotte NL, Salamon G, Shattuck DW et al (2006) Diffusion tensor MRI shows abnormal brainstem crossing fibers associated with ROBO3 mutations. Neurology 67:519–521.  https://doi.org/10.1212/01.wnl.0000227960.38262.0c CrossRefGoogle Scholar
  21. 21.
    Severino M, Tortora D, Pistorio A et al (2016) Expanding the spectrum of congenital anomalies of the diencephalic-mesencephalic junction. Neuroradiology 58:33–44.  https://doi.org/10.1007/s00234-015-1601-x CrossRefGoogle Scholar
  22. 22.
    Poretti A, Boltshauser E, Huisman TAGM (2016) Cerebellar and brainstem malformations. Neuroimaging Clin N Am 26:341–357.  https://doi.org/10.1016/j.nic.2016.03.005 CrossRefGoogle Scholar
  23. 23.
    Peruzzo D, Arrigoni F, Triulzi F et al (2014) Detection of corpus callosum malformations in pediatric population using the discriminative direction in multiple kernel learning. Med Image Comput Comput Assist Interv 17:300–307Google Scholar
  24. 24.
    Kweldam CF, Gwynn H, Vashist A et al (2014) Undecussated superior cerebellar peduncles and absence of the dorsal transverse pontine fibers: a new axonal guidance disorder? Cerebellum 13:536–540.  https://doi.org/10.1007/s12311-014-0562-7 CrossRefGoogle Scholar
  25. 25.
    Avadhani A, Ilayaraja V, Shetty AP, Rajasekaran S (2010) Diffusion tensor imaging in horizontal gaze palsy with progressive scoliosis. Magn Reson Imaging 28:212–216.  https://doi.org/10.1016/j.mri.2009.10.004 CrossRefGoogle Scholar
  26. 26.
    Calloni SF, Cohen JS, Meoded A et al (2017) Pediatric neurology compound heterozygous variants in ROBO1 cause a neurodevelopmental disorder with absence of transverse pontine fibers and thinning of the anterior commissure and corpus callosum. Pediatr Neurol 70:70–74.  https://doi.org/10.1016/j.pediatrneurol.2017.01.018 CrossRefGoogle Scholar
  27. 27.
    Rollins NK, Booth TN, Chahrour MH (2017) Variability of ponto-cerebellar fibers by diffusion tensor imaging in diverse brain malformations. J Child Neurol 32:271–285.  https://doi.org/10.1177/0883073816680734 CrossRefGoogle Scholar
  28. 28.
    Pierpaoli C, Walker L, Irfanoglu MO et al (2010) Tortoise: an integrated software package for processing of diffusion MRI data. In: Proceedings of the annual meeting of the International Society for Magnetic Resonance in Medicine (ISMRM 2010), 1–7 May 2010. Stockholm, Sweden, p. 1597Google Scholar
  29. 29.
    Basser PJ, Pierpaoli C (2011) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. J Magn Reson 213:560–570.  https://doi.org/10.1016/j.jmr.2011.09.022 CrossRefGoogle Scholar
  30. 30.
    Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540CrossRefGoogle Scholar
  31. 31.
    Rohde GK, Barnett AS, Basser PJ et al (2004) Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 51:103–114.  https://doi.org/10.1002/mrm.10677 CrossRefGoogle Scholar
  32. 32.
    Chang LC, Jones DK, Pierpaoli C (2005) RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med 53:1088–1095.  https://doi.org/10.1002/mrm.20426 CrossRefGoogle Scholar
  33. 33.
    Wang R, Benner T, Sorensen AG (2007) Diffusion toolkit: a software package for diffusion imaging data processing and tractography. In: Proceedings of the 15th Meeting of the International Society for Magnetic Resonance in Medicine, Berkeley, p. 3720Google Scholar
  34. 34.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164.  https://doi.org/10.1093/nar/gkq603 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Flores-Sarnat L (2002) Hemimegalencephaly: part 1. Genetic, clinical, and imaging aspects. J Child Neurol 17:373–384; discussion 384.  https://doi.org/10.1177/088307380201700512 CrossRefGoogle Scholar
  36. 36.
    Barkovich AJ, Dobyns WB, Guerrini R (2015) Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 5:a022392.  https://doi.org/10.1101/cshperspect.a022392 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chan WM, Traboulsi EI, Arthur B et al (2006) Horizontal gaze palsy with progressive scoliosis can result from compound heterozygous mutations in ROBO3. J Med Genet 43:e11.  https://doi.org/10.1136/jmg.2005.035436 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jissendi-Tchofo P, Severino M, Nguema-Edzang B et al (2015) Update on neuroimaging phenotypes of mid-hindbrain malformations. Neuroradiology 57:113–138.  https://doi.org/10.1007/s00234-014-1431-2 CrossRefGoogle Scholar
  39. 39.
    Barkovich AJ (2012) Developmental disorders of the midbrain and hindbrain. Front Neuroanat 6:7.  https://doi.org/10.3389/fnana.2012.00007 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jen JC, Chan W-M, Bosley TM et al (2004) Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304:1509–1513.  https://doi.org/10.1126/science.1096437 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Engle EC (2010) Human genetic disorders of axon guidance. Cold Spring Harb Perspect Biol 2:a001784.  https://doi.org/10.1101/cshperspect.a001784 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Friede RL, Boltshauser E (1978) Uncommon syndromes of cerebellar vermis aplasia. I: Joubert syndrome. Dev Med Child Neurol 20:758–763CrossRefGoogle Scholar
  43. 43.
    Ferland RJ, Eyaid W, Collura RV et al (2004) Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 36:1008–1013.  https://doi.org/10.1038/ng1419 CrossRefGoogle Scholar
  44. 44.
    Miyata H, Miyata M, Ohama E (2014) Pyramidal tract abnormalities in the human fetus and infant with trisomy 18 syndrome. Neuropathology 34:219–226.  https://doi.org/10.1111/neup.12081 CrossRefGoogle Scholar
  45. 45.
    ten Donkelaar HJ, Lammens M, Wesseling P et al (2004) Development and malformations of the human pyramidal tract. J Neurol 251:1429–1442.  https://doi.org/10.1007/s00415-004-0653-3 CrossRefGoogle Scholar
  46. 46.
    Walker L, Chang L-C, Nayak A et al (2016) The diffusion tensor imaging (DTI) component of the NIH MRI study of normal brain development (PedsDTI). Neuroimage 124:1125–1130.  https://doi.org/10.1016/j.neuroimage.2015.05.083 CrossRefGoogle Scholar
  47. 47.
    Nayak A, Sadeghi N, Irfanoglu MO et al (2017) Diffusion-tensor based morphometry of normal human development from infancy to adulthood. In: Proceedings of the 25th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), 22-27 April 2017, Honolulu, p. 3371Google Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Filippo Arrigoni
    • 1
    Email author return OK on get
  • Romina Romaniello
    • 2
  • Denis Peruzzo
    • 1
  • Andrea Poretti
    • 3
  • Maria Teresa Bassi
    • 4
  • Carlo Pierpaoli
    • 5
  • Enza Maria Valente
    • 6
    • 7
  • Sara Nuovo
    • 7
    • 8
  • Eugen Boltshauser
    • 9
  • Thierry André Gerard Marie Huisman
    • 3
  • Fabio Triulzi
    • 10
  • Renato Borgatti
    • 2
  1. 1.Neuroimaging LabScientific Institute, IRCCS E. MedeaBosisio PariniItaly
  2. 2.Neuropsychiatry and Neurorehabilitation UnitScientific Institute, IRCCS E. MedeaLeccoItaly
  3. 3.Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Laboratory of Molecular BiologyScientific Institute, IRCCS E. MedeaLeccoItaly
  5. 5.Quantitative Medical Imaging SectionNational Institute of Biomedical Imaging and Bioengineering, National Institutes of HealthBethesdaUSA
  6. 6.Department of Molecular MedicineUniversity of PaviaPaviaItaly
  7. 7.Neurogenetics Lab, IRCCS Santa Lucia FoundationRomeItaly
  8. 8.Department of Medicine and SurgeryUniversity of SalernoSalernoItaly
  9. 9.Department of Paediatric NeurologyUniversity Children’s HospitalZurichSwitzerland
  10. 10.Neuroradiology DepartmentFondazione IRCCS Ca’ Granda, Ospedale Maggiore PoliclinicoMilanoItaly

Personalised recommendations