Advertisement

European Radiology

, Volume 29, Issue 2, pp 716–724 | Cite as

Abnormalities of white and grey matter in early multiple system atrophy: comparison of parkinsonian and cerebellar variants

  • Santosh Kumar Dash
  • Albert Stezin
  • Tejashree Takalkar
  • Lija George
  • Nitish L Kamble
  • M Netravathi
  • Ravi Yadav
  • Keshav J. Kumar
  • Madhura Ingalhalikar
  • Jitender Saini
  • Pramod Kumar PalEmail author
Head and Neck
  • 292 Downloads

Abstract

Objective

Multiple system atrophy (MSA) is a neurodegenerative disorder with progressive motor and autonomic dysfunction. There is a paucity of information on the early neurostructural changes in MSA, especially its subtypes, MSA-P (patients with predominant parkinsonism) and MSA-C (patients with predominant cerebellar signs). This study investigates the abnormalities of grey matter (GM) and white matter (WM) in early MSA and its subtypes using multi-modal voxel-based analysis.

Materials and methods

Twenty-six patients with MSA with duration of symptoms ≤ 2.5 years (mean duration: 1.6 ±0.9 years) were assessed clinically and with 3T MRI. Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) were performed to identify the structural changes in MSA and its subtypes. The GM changes and diffusion parameters of WM tracts were correlated with the clinical scores. The results were compared with MRI of 25 age- and gender-matched healthy controls.

Results

The early structural changes in MSA included GM loss of the cerebellum and subcallosal gyrus with widespread involvement of supratentorial and infratentorial WM fibres. In MSA-C, GM loss was limited to the cerebellum with WM changes predominantly affecting the infratentorial WM and association tracts. In contrast, MSA-P did not demonstrate any GM loss and the WM involvement was mainly supratentorial. There was no significant correlation between structural changes and clinical severity score.

Conclusion

In early MSA, WM microstructure was more affected than GM. These changes were greater in MSA-C than in MSA-P, suggesting variable deterioration in the subtypes of MSA.

Key Points

• Structural changes in early multiple system atrophy were evaluated using multi-modal neuroimaging.

• White matter was more affected than grey matter in early MSA.

• Clinical variables did not correlate with early structural changes.

Keywords

Multiple system atrophy Cerebellum Neuroimaging Diffusion tensor imaging 

Abbreviations

CC

Corpus callosum

DTI

Diffusion tensor imaging

EMSA-SG

European multiple system atrophy study group

FA

Fractional anisotropy

GM

Grey matter

IC

Internal capsule

ICP

Inferior cerebellar peduncle

IFOF

Inferior fronto-occipital fasciculus

MCP

Middle cerebellar peduncle

MD

Mean diffusivity

MRI

Magnetic resonance imaging

MSA-C

Cerebellar ataxia predominant multiple system atrophy

MSA-P

Parkinsonism predominant multiple system atrophy

MSA

Multiple system atrophy

NAMSA-SG

North American multiple system atrophy study group

SLF

Superior longitudinal fasciculus

UMSARS

Unified multiple system atrophy rating scale

VBM

Voxel-based morphometry

WM

White matter

Notes

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Dr. Pramod Kumar Pal.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Financial disclosure

The authors report no financial interests or conflicts of interest.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects in this study.

Ethical approval

Institutional review board approval was obtained.

Methodology

• prospective

• case-control study

• performed at one institution

Supplementary material

330_2018_5594_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb)

References

  1. 1.
    Fanciulli A, Wenning GK (2015) Multiple-System Atrophy. N Engl J Med 372:249–263.  https://doi.org/10.1056/NEJMra1311488 CrossRefGoogle Scholar
  2. 2.
    Stefanova N, Bücke P, Duerr S, Wenning GK (2009) Multiple system atrophy: an update. Lancet Neurol. 8:1172–1178CrossRefGoogle Scholar
  3. 3.
    Wenning GK, Ben-Shlomo Y, Hughes A et al (2000) What clinical features are most useful to distinguish definite multiple system atrophy from Parkinson’s disease? J Neurol Neurosurg Psychiatry 68:434–440.  https://doi.org/10.1136/jnnp.68.4.434 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676.  https://doi.org/10.1212/01.wnl.0000324625.00404.15 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ubhi K, Low P, Masliah E (2011) Multiple system atrophy: A clinical and neuropathological perspective. Trends Neurosci 34:581–590.  https://doi.org/10.1016/j.tins.2011.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brooks DJ, Seppi K (2009) Proposed neuroimaging criteria for the diagnosis of multiple system atrophy. Mov Disord 24:949–964.  https://doi.org/10.1002/mds.22413 CrossRefGoogle Scholar
  7. 7.
    Kim H-J, Jeon BS, Kim YE et al (2013) Clinical and imaging characteristics of dementia in multiple system atrophy. Parkinsonism Relat Disord 19:617–21. doi:  https://doi.org/10.1016/j.parkreldis.2013.02.012
  8. 8.
    Brenneis C, Boesch SM, Egger KE et al (2006) Cortical atrophy in the cerebellar variant of multiple system atrophy: A voxel-based morphometry study. Mov Disord 21:159–165.  https://doi.org/10.1002/mds.20656 CrossRefGoogle Scholar
  9. 9.
    Chang CC, Chang YY, Chang WN et al (2009) Cognitive deficits in multiple system atrophy correlate with frontal atrophy and disease duration. Eur J Neurol 16:1144–1150.  https://doi.org/10.1111/j.1468-1331.2009.02661.x CrossRefGoogle Scholar
  10. 10.
    Tzarouchi LC, Astrakas LG, Konitsiotis S et al (2010) Voxel-based morphometry and voxel-based relaxometry in parkinsonian variant of multiple system atrophy. J Neuroimaging 20:260–266.  https://doi.org/10.1111/j.1552-6569.2008.00343.x CrossRefGoogle Scholar
  11. 11.
    Hauser T-K, Luft A, Skalej M et al (2006) Visualization and quantification of disease progression in multiple system atrophy. Mov Disord 21:1674–1681.  https://doi.org/10.1002/mds.21032 CrossRefGoogle Scholar
  12. 12.
    Lee MJ, Shin J-H, Seoung J-K et al (2016) Cognitive impairments associated with morphological changes in cortical and subcortical structures in multiple system atrophy of the cerebellar type. Eur J Neurol 23:92–100.  https://doi.org/10.1111/ene.12796 CrossRefGoogle Scholar
  13. 13.
    Oishi K, Konishi J, Mori S et al (2009) Reduced fractional anisotropy in early-stage cerebellar variant of multiple system atrophy. J Neuroimaging 19:127–131.  https://doi.org/10.1111/j.1552-6569.2008.00262.x CrossRefGoogle Scholar
  14. 14.
    Zanigni S, Evangelisti S, Testa C et al (2017) White matter and cortical changes in atypical parkinsonisms: A multimodal quantitative MR study. Parkinsonism Relat Disord 39:44–51.  https://doi.org/10.1016/j.parkreldis.2017.03.001 CrossRefGoogle Scholar
  15. 15.
    Wang J, Wai Y, Lin W-Y et al (2010) Microstructural changes in patients with progressive supranuclear palsy: a diffusion tensor imaging study. J Magn Reson Imaging 32:69–75.  https://doi.org/10.1002/jmri.22229 CrossRefGoogle Scholar
  16. 16.
    Blain CRV, Barker GJ, Jarosz JM et al (2006) Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology 67:2199–2205.  https://doi.org/10.1212/01.wnl.0000249307.59950.f8 CrossRefGoogle Scholar
  17. 17.
    Wang PS, Wu HM, Lin CP, Soong BW (2011) Use of diffusion tensor imaging to identify similarities and differences between cerebellar and Parkinsonism forms of multiple system atrophy. Neuroradiology 53:471–481.  https://doi.org/10.1007/s00234-010-0757-7 CrossRefGoogle Scholar
  18. 18.
    Wang P-S, Yeh C-L, Lu C-F et al (2016) The involvement of supratentorial white matter in multiple system atrophy: a diffusion tensor imaging tractography study. Acta Neurol Belg 117:213–220.  https://doi.org/10.1007/s13760-016-0724-0 CrossRefGoogle Scholar
  19. 19.
    Ji L, Zhu D, Xiao C, Shi J (2014) Tract based spatial statistics in multiple system atrophy: A comparison between clinical subtypes. Parkinsonism Relat Disord 20:1050–1055.  https://doi.org/10.1016/j.parkreldis.2014.06.017 CrossRefGoogle Scholar
  20. 20.
    Ito S, Makino T, Shirai W, Hattori T (2008) Diffusion tensor analysis of corpus callosum in progressive supranuclear palsy. Neuroradiology 50:981–985.  https://doi.org/10.1007/s00234-008-0447-x CrossRefGoogle Scholar
  21. 21.
    Rulseh AM, Keller J, Rusz J et al (2016) Diffusion tensor imaging in the characterization of multiple system atrophy. Neuropsychiatr Dis Treat 12:2181–2187.  https://doi.org/10.2147/NDT.S109094 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wenning GK, Geser F, Krismer F et al (2013) The natural history of multiple system atrophy: A prospective European cohort study. Lancet Neurol. 12:264–274.  https://doi.org/10.1016/S1474-4422(12)70327-7 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Low PA, Reich SG, Jankovic J et al (2015) Natural history of multiple system atrophy in the USA: a prospective cohort study. Lancet Neurol. 14:710–719.  https://doi.org/10.1016/s1474-4422(15)00058-7 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Popescu V, Battaglini M, Hoogstrate WS et al (2012) Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis. Neuroimage 61:1484–1494.  https://doi.org/10.1016/j.neuroimage.2012.03.074 CrossRefGoogle Scholar
  25. 25.
    Tristán-Vega A, Aja-Fernández S (2010) DWI filtering using joint information for DTI and HARDI. Med Image Anal. 14:205–218.  https://doi.org/10.1016/j.media.2009.11.001 CrossRefGoogle Scholar
  26. 26.
    Mestre TA, Gupta A, Lang A E (2016) MRI signs of multiple system atrophy preceding the clinical diagnosis: the case for an imaging-supported probable MSA diagnostic category. J Neurol Neurosurg Psychiatry. 87 443–4.Google Scholar
  27. 27.
    Laurens B, Vergnet S, Lopez MC et al (2017) Multiple System Atrophy - State of the Art. Curr Neurol Neurosci Rep 17.  https://doi.org/10.1007/s11910-017-0751-0
  28. 28.
    Roncevic D, Palma JA, Martinez J et al (2014) Cerebellar and parkinsonian phenotypes in multiple system atrophy: similarities, differences and survival. J Neural Transm (Vienna). 121:507–512CrossRefGoogle Scholar
  29. 29.
    Worker A, Blain C, Jarosz J et al (2014) Diffusion Tensor Imaging of Parkinson’s Disease, Multiple System Atrophy and Progressive Supranuclear Palsy: A Tract-Based Spatial Statistics Study. PLoS One. 9:e112638.  https://doi.org/10.1371/journal.pone.0112638 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tha KK, Terae S, Yabe I et al (2010) Microstructural white matter abnormalities of multiple system atrophy: in vivo topographic illustration by using diffusion-tensor MR imaging. Radiology. 255:563–569.  https://doi.org/10.1148/radiol.10090988 CrossRefGoogle Scholar
  31. 31.
    Tir M, Delmaire C, Le Thuc V et al (2009) Motor-related circuit dysfunction in MSA-P: Usefulness of combined whole-brain imaging analysis. Mov Disord 24:863–870CrossRefGoogle Scholar
  32. 32.
    Kim JS, Yang JJ, Lee DK et al (2015) Cognitive impairment and its structural correlates in the parkinsonian subtype of multiple system atrophy. Neurodegener Dis 15:294–300.  https://doi.org/10.1159/000430953 CrossRefGoogle Scholar
  33. 33.
    Shigemoto Y, Matsuda H, Kamiya K et al (2013) In vivo evaluation of gray and white matter volume loss in the parkinsonian variant of multiple system atrophy using SPM8 plus DARTEL for VBM. NeuroImage Clin 2:491–496.  https://doi.org/10.1016/j.nicl.2013.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Minnerop M, Specht K, Ruhlmann J et al (2007) Voxel-based morphometry and voxel-based relaxometry in multiple system atrophy-A comparison between clinical subtypes and correlations with clinical parameters. Neuroimage. 36:1086–1095.  https://doi.org/10.1016/j.neuroimage.2007.04.028 CrossRefGoogle Scholar
  35. 35.
    Minnerop M, Lüders E, Specht K et al (2010) Callosal tissue loss in multiple system atrophy-A one-year follow-up study. Mov Disord 25:2613–2620.  https://doi.org/10.1002/mds.23318 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Specht K, Minnerop M, Müller-Hübenthal J et al (2005) Complementary results by combining voxel-based morphometry and voxel-based relaxometry. Neuroimage. 25:287–293.  https://doi.org/10.1016/j.neuroimage.2004.11.022 CrossRefGoogle Scholar
  37. 37.
    Brenneis C, Egger K, Scherfler C et al (2007) Progression of brain atrophy in multiple system atrophy: A longitudinal VBM study. J Neurol 254:191–196.  https://doi.org/10.1007/s00415-006-0325-6 CrossRefGoogle Scholar
  38. 38.
    Yang H, Wang X, Liao W et al (2015) Application of diffusion tensor imaging in multiple system atrophy: the involvement of pontine transverse and longitudinal fibers. Int J Neurosci 125: 18–24.Google Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Santosh Kumar Dash
    • 1
  • Albert Stezin
    • 2
  • Tejashree Takalkar
    • 3
  • Lija George
    • 1
  • Nitish L Kamble
    • 1
  • M Netravathi
    • 1
  • Ravi Yadav
    • 1
  • Keshav J. Kumar
    • 4
  • Madhura Ingalhalikar
    • 3
  • Jitender Saini
    • 5
  • Pramod Kumar Pal
    • 1
    Email author
  1. 1.Department of NeurologyNational Institute of Mental Health & NeurosciencesBangaloreIndia
  2. 2.Department of Clinical Neuroscience and Department of NeurologyNational Institute of Mental Health & NeurosciencesBangaloreIndia
  3. 3.Symbiosis Institute of TechnologySymbiosis International UniversityPuneIndia
  4. 4.Department of Clinical PsychologyNational Institute of Mental Health and NeurosciencesBangaloreIndia
  5. 5.Department of Neuroimaging & Interventional RadiologyNational Institute of Mental Health & NeurosciencesBangaloreIndia

Personalised recommendations