European Radiology

, Volume 28, Issue 9, pp 3591–3600 | Cite as

Gd-EOB-DTPA-enhanced T1 relaxometry for assessment of liver function determined by real-time 13C-methacetin breath test

  • Michael HaimerlEmail author
  • Irene Fuhrmann
  • Stefanie Poelsterl
  • Claudia Fellner
  • Marcel D. Nickel
  • Kilian Weigand
  • Marc H. Dahlke
  • Niklas Verloh
  • Christian Stroszczynski
  • Philipp Wiggermann



To determine whether liver function as determined by intravenous administration of 13C-methacetin and continuous real-time breath analysis can be estimated quantitatively from gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance (MR) relaxometry.


Sixty-six patients underwent a 13C-methacetin breath test (13C-MBT) for evaluation of liver function and Gd-EOB-DTPA-enhanced T1-relaxometry at 3 T. A transverse 3D VIBE sequence with an inline T1 calculation based on variable flip angles was acquired prior to (T1 pre) and 20 min post-Gd-EOB-DTPA (T1 post) administration. The reduction rate of T1 relaxation time (rrT1) and T1 relaxation velocity index (∆R1) between pre- and post-contrast images was evaluated. 13C-MBT values were correlated with T1post, ∆R1 and rrT1, providing an MRI-based estimated 13C-MBT value. The interobserver reliability was assessed by determining the intraclass correlation coefficient (ICC).


Stratified by three different categories of 13C-MBT readouts, there was a constant increase of T1 post with increasing progression of diminished liver function (p ≤ 0.030) and a constant significant decrease of ∆R1 (p ≤ 0.025) and rrT1 (p < 0.018) with progression of liver damage as assessed by 13C-methacetin breath analysis. ICC for all T1 relaxation values and indices was excellent (> 0.88). A simple regression model showed a log-linear correlation of 13C-MBT values with T1post (r = 0.57; p < 0.001), ∆R1 (r = 0.59; p < 0.001) and rrT1 (r = 0.70; p < 0.001).


Liver function as determined using real-time 13C-methacetin breath analysis can be estimated quantitatively from Gd-EOB-DTPA-enhanced MR relaxometry.

Key Points

Gd-EOB-DTPA-enhanced T1 relaxometry quantifies liver function

Gd-EOB-DTPA-enhanced MR relaxometry may provide parameters for assessing liver function before surgery

Gd-EOB-DTPA-enhanced MR relaxometry may be useful for monitoring liver disease progression

Gd-EOB-DTPA-enhanced MR relaxometry has the potential to become a novel liver function index


Contrast media Liver diseases Liver function tests Breath test Magnetic resonance imaging 



13C-methacetin breath test


Gadoxetic acid


Hepatocellular carcinoma


Hepatocyte-specific cytochrome P450 1A2


Indocyanine green


Liver maximum capacity


Non-alcoholic steatohepatitis


Organic anion transporting peptide


Reduction rate of T1 relaxation times


Region of interest


Signal intensities


T1 relaxation velocity index

T1 post

T1-relaxometry measurements 20 min after Gd-EOB-DTPA administration



The authors state that this work has not received any funding.

Compliance with ethical standards


The scientific guarantor of this publication is PD Dr. Philipp Wiggermann.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.


• retrospective

• case-control study

• performed at one institution


  1. 1.
    Morris-Stiff G, Gomez D, Prasad R (2009) Quantitative assessment of hepatic function and its relevance to the liver surgeon. J Gastrointest Surg 13:374–385CrossRefPubMedGoogle Scholar
  2. 2.
    Guglielmi A, Ruzzenente A, Conci S, Valdegamberi A, Iacono C (2012) How much remnant is enough in liver resection? Dig Surg 29:6–17CrossRefPubMedGoogle Scholar
  3. 3.
    Schreckenbach T, Liese J, Bechstein WO, Moench C (2012) Posthepatectomy liver failure. Dig Surg 29:79–85CrossRefPubMedGoogle Scholar
  4. 4.
    Stockmann M, Lock JF, Riecke B et al (2009) Prediction of postoperative outcome after hepatectomy with a new bedside test for maximal liver function capacity. Ann Surg 250:119–125CrossRefPubMedGoogle Scholar
  5. 5.
    Lock JF, Schwabauer E, Martus P et al (2010) Early diagnosis of primary nonfunction and indication for reoperation after liver transplantation. Liver Transpl 16:172–180CrossRefPubMedGoogle Scholar
  6. 6.
    Lock JF, Westphal T, Rubin T et al (2017) LiMAx test improves diagnosis of chemotherapy-associated liver injury before resection of colorectal liver metastases. Ann Surg Oncol.
  7. 7.
    Kaffarnik MF, Lock JF, Vetter H et al (2013) Early diagnosis of sepsis-related hepatic dysfunction and its prognostic impact on survival: a prospective study with the LiMAx test. Critical Care (London, England) 17:R259CrossRefGoogle Scholar
  8. 8.
    Rubin T, von Haimberger T, Helmke A, Heyne K (2011) Quantitative determination of metabolization dynamics by a real-time 13CO2 breath test. J Breath Res 5:027102CrossRefPubMedGoogle Scholar
  9. 9.
    Jara M, Bednarsch J, Valle E et al (2015) Reliable assessment of liver function using LiMAx. J Surg Res 193:184–189CrossRefPubMedGoogle Scholar
  10. 10.
    Stockmann M, Lock JF, Malinowski M, Niehues SM, Seehofer D, Neuhaus P (2010) The LiMAx test: a new liver function test for predicting postoperative outcome in liver surgery. HPB (Oxford) 12:139–146CrossRefGoogle Scholar
  11. 11.
    Hamm B, Staks T, Muhler A et al (1995) Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 195:785–792CrossRefPubMedGoogle Scholar
  12. 12.
    Nassif A, Jia J, Keiser M et al (2012) Visualization of hepatic uptake transporter function in healthy subjects by using gadoxetic acid-enhanced MR imaging. Radiology 264:741–750CrossRefPubMedGoogle Scholar
  13. 13.
    Noren B, Forsgren MF, Dahlqvist Leinhard O et al (2013) Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA. Eur Radiol 23:174–181CrossRefPubMedGoogle Scholar
  14. 14.
    Kamimura K, Fukukura Y, Yoneyama T et al (2014) Quantitative evaluation of liver function with T1 relaxation time index on Gd-EOB-DTPA-enhanced MRI: comparison with signal intensity-based indices. J Magn Reson Imaging 40:884–889CrossRefPubMedGoogle Scholar
  15. 15.
    Dahlqvist Leinhard O, Dahlstrom N, Kihlberg J et al (2012) Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: a pilot study. Eur Radiol 22:642–653CrossRefPubMedGoogle Scholar
  16. 16.
    Kukuk GM, Schaefer SG, Fimmers R et al (2014) Hepatobiliary magnetic resonance imaging in patients with liver disease: correlation of liver enhancement with biochemical liver function tests. Eur Radiol 24:2482–2490CrossRefPubMedGoogle Scholar
  17. 17.
    Katsube T, Okada M, Kumano S et al (2011) Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Investig Radiol 46:277–283CrossRefGoogle Scholar
  18. 18.
    Seale MK, Catalano OA, Saini S, Hahn PF, Sahani DV (2009) Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree. Radiographics 29:1725–1748CrossRefPubMedGoogle Scholar
  19. 19.
    Stockmann M, Lock JF, Malinowski M et al (2010) How to define initial poor graft function after liver transplantation? - a new functional definition by the LiMAx test. Transpl Int 23:1023–1032CrossRefPubMedGoogle Scholar
  20. 20.
    Jara M, Reese T, Malinowski M et al (2015) Reductions in post-hepatectomy liver failure and related mortality after implementation of the LiMAx algorithm in preoperative work-up: a single-centre analysis of 1170 hepatectomies of one or more segments. HPB (Oxford) 17:651–658CrossRefGoogle Scholar
  21. 21.
    Haimerl M, Verloh N, Zeman F et al (2013) Assessment of clinical signs of liver cirrhosis using T1 mapping on Gd-EOB-DTPA-enhanced 3T MRI. PLoS One 8:e85658CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Heye T, Yang S-R, Bock M et al (2012) MR relaxometry of the liver: significant elevation of T1 relaxation time in patients with liver cirrhosis. Eur Radiol 22:1224–1232CrossRefPubMedGoogle Scholar
  23. 23.
    Haimerl M, Verloh N, Fellner C et al (2014) MRI-based estimation of liver function: Gd-EOB-DTPA-enhanced T1 relaxometry of 3T vs. the MELD score. Sci Rep 4:5621CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yoneyama T, Fukukura Y, Kamimura K et al (2014) Efficacy of liver parenchymal enhancement and liver volume to standard liver volume ratio on Gd-EOB-DTPA-enhanced MRI for estimation of liver function. Eur Radiol 24:857–865CrossRefPubMedGoogle Scholar
  25. 25.
    Haimerl M, Schlabeck M, Verloh N et al (2016) Volume-assisted estimation of liver function based on Gd-EOB-DTPA-enhanced MR relaxometry. Eur Radiol 26:1125–1133CrossRefPubMedGoogle Scholar
  26. 26.
    Leonhardt M, Keiser M, Oswald S et al (2010) Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab Dispos 38:1024–1028CrossRefPubMedGoogle Scholar
  27. 27.
    Graaf WD, Häusler S, Heger M et al (2011) Transporters involved in the hepatic uptake of (99m)Tc-mebrofenin and indocyanine green. J Hepatol 54:738–745CrossRefPubMedGoogle Scholar
  28. 28.
    Armuzzi A, Candelli M, Zocco MA et al (2002) Breath testing for human liver function assessment. Aliment Pharmacol Ther 16:1977–1996CrossRefPubMedGoogle Scholar
  29. 29.
    Afolabi P, Wright M, Wootton SA, Jackson AA (2013) Clinical utility of 13C-liver-function breath tests for assessment of hepatic function. Dig Dis Sci 58:33–41CrossRefPubMedGoogle Scholar
  30. 30.
    Orlando R, Padrini R, Perazzi M, De Martin S, Piccoli P, Palatini P (2006) Liver dysfunction markedly decreases the inhibition of cytochrome P450 1A2-mediated theophylline metabolism by fluvoxamine. Clin Pharmacol Ther 79:489–499CrossRefPubMedGoogle Scholar
  31. 31.
    Floreani M, De Martin S, Gabbia D et al (2013) Severe liver cirrhosis markedly reduces AhR-mediated induction of cytochrome P450 in rats by decreasing the transcription of target genes. PLoS One 8:e61983CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hasler JA (1999) Pharmacogenetics of cytochromes P450. Mol Asp Med 20(12-24):25–137Google Scholar
  33. 33.
    Elbekai RH, Korashy HM, El-Kadi AO (2004) The effect of liver cirrhosis on the regulation and expression of drug metabolizing enzymes. Curr Drug Metab 5:157–167CrossRefPubMedGoogle Scholar
  34. 34.
    Morgan DJ, McLean AJ (1995) Clinical pharmacokinetic and pharmacodynamic considerations in patients with liver disease. An update. Clin Pharmacokinet 29:370–391CrossRefPubMedGoogle Scholar
  35. 35.
    Kawasaki S, Imamura H, Bandai Y, Sanjo K, Idezuki Y (1992) Direct evidence for the intact hepatocyte theory in patients with liver cirrhosis. Gastroenterology 102:1351–1355CrossRefPubMedGoogle Scholar
  36. 36.
    Huet PM, Villeneuve JP, Fenyves D (1997) Drug elimination in chronic liver diseases. J Hepatol 26(Suppl 2):63–72CrossRefPubMedGoogle Scholar
  37. 37.
    Hickey PL, Angus PW, McLean AJ, Morgan DJ (1995) Oxygen supplementation restores theophylline clearance to normal in cirrhotic rats. Gastroenterology 108:1504–1509CrossRefPubMedGoogle Scholar
  38. 38.
    Wang L, Collins C, Kelly EJ et al (2016) Transporter expression in liver tissue from subjects with alcoholic or hepatitis C cirrhosis quantified by targeted quantitative proteomics. Drug Metab Dispos 44:1752–1758CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Michael Haimerl
    • 1
    Email author
  • Irene Fuhrmann
    • 1
  • Stefanie Poelsterl
    • 1
  • Claudia Fellner
    • 1
  • Marcel D. Nickel
    • 2
  • Kilian Weigand
    • 3
  • Marc H. Dahlke
    • 4
  • Niklas Verloh
    • 1
  • Christian Stroszczynski
    • 1
  • Philipp Wiggermann
    • 1
  1. 1.Department of RadiologyUniversity Hospital RegensburgRegensburgGermany
  2. 2.MR Applications PredevelopmentSiemens Healthcare GmbHErlangenGermany
  3. 3.Department of Internal Medicine IUniversity Hospital RegensburgRegensburgGermany
  4. 4.Department of SurgeryUniversity Hospital RegensburgRegensburgGermany

Personalised recommendations