Advertisement

Magnetic resonance angiography of fetal vasculature at 3.0 T

Abstract

Magnetic resonance angiography has not been used much previously for visualizing fetal vessels in utero for reasons that include a contraindication for the use of exogenous contrast agents, maternal respiratory motion and fetal motion. In this work, we report the feasibility of using an appropriately modified clinical time-of-flight magnetic resonance imaging sequence for non-contrast angiography of human fetal and placental vessels at 3.0 T. Using this 2D angiography technique, it is possible to visualize fetal vascular networks in late pregnancy.

Key Points

• 3D-visualization of fetal vasculature is feasible using non-contrast MRA at 3.0 T.

• Visualization of placental vasculature is also possible with this method.

• Fetal MRA can serve as a vascular localizer for quantitative MRI studies.

• This method can be extended to 1.5 T.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Minette MS, Sahn DJ (2006) Ventricular septal defects. Circulation 114(20):2190–2197

  2. 2.

    Savelli S et al (2009) Fetal mid-muscular ventricular septal defect: role of fetal cardio-vascular evaluation with magnetic resonance (MR) imaging and MR-angiography. Eur J Radiol Extra 69(3):e101–e103

  3. 3.

    Malian V, Lee JE (2001) MR imaging and MR angiography of an abdominal pregnancy with placental infarction. Am J Roentgenol 177(6):1305–1306

  4. 4.

    Goncalves LF et al (2004) Four-dimensional ultrasonography of the fetal heart using color Doppler spatiotemporal image correlation. J Ultrasound Med 23(4):473–481

  5. 5.

    Goncalves LF et al (2003) Four-dimensional ultrasonography of the fetal heart with spatiotemporal image correlation. Am J Obstet Gynecol 189(6):1792–1802

  6. 6.

    Yagel S et al (2007) 3D and 4D ultrasound in fetal cardiac scanning: a new look at the fetal heart. Ultrasound Obstet Gynecol 29(1):81–95

  7. 7.

    Hendler I et al (2005) Suboptimal second-trimester ultrasonographic visualization of the fetal heart in obese women should we repeat the examination? J Ultrasound Med 24(9):1205–1209

  8. 8.

    American College of Radiology (ACR); Society for Pediatric Radiology (SPR): ACR-SPR practice guideline for the safe and optimal performance of fetal magnetic resonance imaging (MRI). Revised 2015 (Resolution 11). http://www.acr.og/~/media/CB384A65345F402083639E6756CE513F.pdf

  9. 9.

    Malinger G et al (2004) Fetal brain imaging: a comparison between magnetic resonance imaging and dedicated neurosonography. Ultrasound Obstet Gynecol 23(4):333–340

  10. 10.

    Levine D (2001) Ultrasound versus magnetic resonance imaging in fetal evaluation. Top Magn Reson Imaging 12(1):25–38

  11. 11.

    Prayer D. Fetal MRI. Heidelberg: Springer; 2011. XIII, 528 p

  12. 12.

    Yamamura J et al (2010) Magnetic resonance angiography of fetal vessels: feasibility study in the sheep fetus. Jpn J Radiol 28(10):720–726

  13. 13.

    Krishnamurthy U et al (2015) MR imaging of the fetal brain at 1.5 T and 3.0 T field strengths: comparing specific absorption rate (SAR) and image quality. J Perinat Med 43(2):209–220

  14. 14.

    Victoria T et al (2014) Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 44(4):376–386

  15. 15.

    Zungho Zun AS, Bulas D, Du Plessis AJ, Limperopoulos C (2015) Three-dimensional placental perfusion imaging using velocity-selective arterial spin labeled MRI: preliminary results. in ISPD 19th International Conference on Prenatal Diagnosis and Therapy. Washington, DC, USA

  16. 16.

    Uday Krishnamurthy WF, Neelavalli J, Jella PK, Hamtaei E, Hernandez-Andrade E, Mody S et al (2014) Quantitative flow imaging in the human umbilical vessels in-utero using non-triggered phase contrast MRI. In Joint Annual Meeting ISMRM-ESMRMB. 2014. Milan, Italy

  17. 17.

    Neelavalli J et al (2014) Measuring venous blood oxygenation in fetal brain using susceptibility‐weighted imaging. J Magn Reson Imaging 39(4):998–1006

  18. 18.

    Bilardo CM, Campbell S, Nicolaides KH (1988) Mean blood velocities and flow impedance in the fetal descending thoracic aorta and common carotid artery in normal pregnancy. Early Hum Dev 18(2):213–221

  19. 19.

    Weissman A et al (1994) Sonographic measurements of the umbilical cord and vessels during normal pregnancies. J Ultrasound Med 13(1):11–14

  20. 20.

    Seydel HG (1964) The diameters of the cerebral arteries of the human fetus. Anat Rec 150:79–88

  21. 21.

    Cartier MS et al (1987) The normal diameter of the fetal aorta and pulmonary artery: echocardiographic evaluation in utero. AJR Am J Roentgenol 149(5):1003–1007

  22. 22.

    Ibanez L, Schroeder W, Ng L, Cates J (2005) The ITKK Software Guide. Kitware Inc

  23. 23.

    Haacke EM, Lenz GW, Nelson AD (1987) Pseudo‐gating: Elimination of periodic motion artifacts in magnetic resonance imaging without gating. Magn Reson Med 4(2):162–174

  24. 24.

    Salafia CM et al (2010) Placental surface shape, function, and effects of maternal and fetal vascular pathology. Placenta 31(11):958–962

  25. 25.

    Yampolsky M et al (2009) Centrality of the umbilical cord insertion in a human placenta influences the placental efficiency. Placenta 30(12):1058–1064

  26. 26.

    Rasmussen AS et al (2014) MR angiography demonstrates a positive correlation between placental blood vessel volume and fetal size. Arch Gynecol Obstet 290(6):1127–1131

  27. 27.

    Edelman RR et al (2013) Quiescent‐inflow single‐shot magnetic resonance angiography using a highly undersampled radial k‐space trajectory. Magn Reson Med 70(6):1662–1668

  28. 28.

    Glover G, Pauly J (1992) Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 28(2):275–289

  29. 29.

    Meyer CH et al (1992) Fast spiral coronary artery imaging. Magn Reson Med 28(2):202–213

  30. 30.

    Shankaranarayanan A et al (2001) Two‐step navigatorless correction algorithm for radial k‐space MRI acquisitions. Magn Reson Med 45(2):277–288

  31. 31.

    Spees WM et al (2001) Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2, T* 2, and non‐Lorentzian signal behavior. Magn Reson Med 45(4):533–542

  32. 32.

    De Vis JB et al (2014) Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: implications for arterial spin labelling MRI. Neuroimage Clin 4:517–525

  33. 33.

    Williams L-A et al (2005) Neonatal brain: regional variability of in vivo MR imaging relaxation rates at 3.0 T—Initial Experience 1. Radiology 235(2):595–603

  34. 34.

    Jones RA, Palasis S, Grattan-Smith JD (2004) MRI of the neonatal brain: optimization of spin-echo parameters. Am J Roentgenol 182(2):367–372

  35. 35.

    Atlas SW (ed) (2009) Magnetic resonance imaging of the brain and spine, vol. 1. Lippincott Williams & Wilkins

  36. 36.

    Li D, Wang Y, Waight DJ (1998) Blood oxygen saturation assessment in vivo using T2* estimation. Magn Reson Med 39(5):685–690

  37. 37.

    Zhao JM, Clingman CS, Närväinen MJ, Kauppinen RA, van Zijl P (2007) Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magnetic resonance in medicine, 58(3):592–597

Download references

Acknowledgments

The scientific guarantor of this publication is Dr. Jaladhar Neelavalli. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. This research was supported, in part, by the Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS; by the STTR grant from the NHLBI - 1R42HL112580-01A1); and by Wayne State University’s Perinatology Virtual Discovery Grant to J.N. (made possible by W.K. Kellogg Foundation award P3018205). No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Parts of the data reported in this paper were presented as an abstract at the 25th World Congress on Ultrasound in Obstetrics and Gynecology, 1114 October 2015, Montréal, Quebec, Canada. Methodology: prospective, experimental and performed at one institution.

Author information

Correspondence to Jaladhar Neelavalli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 70317 kb)

ESM 1

(AVI 70317 kb)

ESM 2

(AVI 6089 kb)

ESM 3

(AVI 2705 kb)

ESM 4

(AVI 4887 kb)

ESM 5

(AVI 6370 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neelavalli, J., Krishnamurthy, U., Jella, P.K. et al. Magnetic resonance angiography of fetal vasculature at 3.0 T. Eur Radiol 26, 4570–4576 (2016) doi:10.1007/s00330-016-4243-4

Download citation

Keywords

  • Non-contrast magnetic resonance angiography
  • Time of flight vascular imaging
  • Placental vasculature
  • Fetal circulation
  • Pseudo-triggering