Skip to main content
Log in

Characterization of recombinant glutathione reductase from Antarctic yeast Rhodotorula mucilaginosa

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide, which helps to maintain a cellular reducing environment during stress in organisms. However, GR of polar yeast has not been well-characterized so far. To fully understand the molecular and enzymatic properties of GR from extreme area and broaden its knowledge, a cDNA-encoding GR from Antarctic sea-ice yeast Rhodotorula mucilaginosa (designated as RmGR) was cloned and expressed in Escherichia coli. The open reading frame of RmGR was 1500 bp, encoding an enzyme of 499 amino acids with a predicted pI of 6.07 and molecular weight of 54.8 kDa. SDS-PAGE and gel filtration analysis results showed that the RmGR was a homodimer. Conserved sequence analysis revealed that RmGR behaved typical characteristics of GR, containing a pyridine nucleotide-disulfide oxidoreductase active site, a flavin adenine dinucleotide (FAD), and reduced nicotinamide adenine dinucleotide phosphate (NADPH) binding motifs and two glutathione oxidized binding motifs. The recombinant enzyme displayed relatively high stability at pH 3.0–6.0 and 20–40 °C with optimal enzymatic activity at 30 °C and pH 7.5. Real-time quantitative PCR data showed that the expression of RmGR gene was upregulated after copper treatment of yeast cells. Moreover, RmGR-transformed E. coli exhibited stronger growth profiles than cells with an empty vector after copper and cadmium treatment. Our results demonstrated the possible function of RmGR in adaptation to heavy metals and its potential application in heterologous expression systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achary VMM, Reddy CS, Pandey P, Islam T, Kaul T, Reddy MK (2015) Glutathione reductase a unique enzyme: molecular cloning, expression and biochemical characterization from the stress adapted C4 plant, Pennisetum glaucum (L.) R. Br. Mol Biol Rep 42:947–962

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464

    Article  CAS  Google Scholar 

  • Arias DG, Marquez VE, Beccaria AJ, Guerrero SA, Iglesias AA (2010) Purification and characterization of a glutathione reductase from Phaeodactylum tricornutum. Protist 161:91–101

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    Article  CAS  PubMed  Google Scholar 

  • Collinson LP, Dawes IW (1995) Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Gene 156:123–127

    Article  CAS  PubMed  Google Scholar 

  • Couto N, Wood J, Barber J (2016) The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 95:27–42

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Miao J, Li G, Wang Q, Kan G, Wang G (2005) Effect of Cd on GSH and GSH-related enzymes of Chlamydomonas sp. ICE-L existing in Antarctic ice. J Environ Sci 17:667–671

    CAS  Google Scholar 

  • Ding Y, Miao JL, Wang QF, Zheng Z, Li GY, Jian JC, Wu ZH (2007) Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L. Polar Biol 31:23–30

    Article  Google Scholar 

  • Ding Y, Liu Y, Jian J, Wu Z, Miao J (2012) Molecular cloning and expression analysis of glutathione reductase gene in Chlamydomonas sp. ICE-L from Antarctica. Mar Genom 5:59–64

    Article  Google Scholar 

  • Färber PM, Becker K, Müller S, Schirmer RH, Franklin RM (1996) Molecular cloning and characterization of a putative glutathione reductase gene, the PfGR2 gene, from Plasmodium falciparum. Eur J Biochem 239:655–661

    Article  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Kesherwani M, Velmurugan D, Tripathi T (2016) Fasciola gigantica thioredoxin glutathione reductase: biochemical properties and structural modeling. Int J Biol Macromol 89:152–160

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physiological function of glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17

    Article  CAS  PubMed  Google Scholar 

  • Herath HMLPB, Wickramasinghe PDSU, Bathige SDNK, Jayasooriya RGPT, Kim G, Park MA, Kim C, Lee J (2017) Molecular identification and functional delineation of a glutathione reductase homolog from disk abalone (Haliotis discus discus): insights as a potent player in host antioxidant defense. Fish Shellfish Immunol 60:355–367

    Article  CAS  PubMed  Google Scholar 

  • Ilyas S, Rehman A, Coelho AV, Sheehan D (2016) Proteomic analysis of an environmental isolate of Rhodotorula mucilaginosa after arsenic and cadmium challenge: identification of a protein expression signature for heavy metal exposure. J Proteomics 141:47–56

    Article  CAS  PubMed  Google Scholar 

  • Ji M, Barnwell CV, Grunden AM (2015) Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea. Extremophiles 19:863–874

    Article  CAS  PubMed  Google Scholar 

  • Jiang FY, Hellman U, Sroga GE, Bergman B, Mannervik B (1995) Cloning, sequencing, and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120. J Biol Chem 270:22882–22889

    Article  CAS  PubMed  Google Scholar 

  • Kan GF, Wang XF, Jiang J, Zhang CS, Chi ML, Ju Y, Shi CJ (2018) Copper stress response in yeast Rhodotorula mucilaginosa AN5 isolated from sea ice, Antarctic. Microbiology Open 8:e00657

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim I, Shin S, Kim Y, Kim H, Yoon H (2009) Expression of a glutathione reductase from Brassica rapa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli. Mol Cells 28:479–488

    Article  CAS  PubMed  Google Scholar 

  • Korge P, Calmettes G, Weiss JN (2015) Increased reactive oxygen species production during reductive stress: the roles of mitochondrial glutathione and thioredoxin reductases. BBA 1847:514–525

    CAS  PubMed  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Won S, Lee B, Park H, Chung W, Jo J (2002) Genomic cloning and characterization of glutathione reductase gene from Brassica campestris var Pekinensis. Mol Cells 13:245–251

    CAS  PubMed  Google Scholar 

  • Liu Z, Zhang X, Bai J, Suo B, Xu P, Wang L (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Sci Hortic 121:138–143

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (2010) Ascorbate and glutathione: protectors of plants in oxidative stress. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, The Netherlands, pp 209–229

    Chapter  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Tripathi RD, Srivastava S, Dwivedi S, Trivedi PK, Dhankher OP, Khare A (2009) Thiol metabolism play significant role during Cd detoxification by Ceratophyllum demersum L. Bioresource Technol 100:2155–2161

    Article  CAS  Google Scholar 

  • Mudalkar S, Sreeharsha RV, Reddy AR (2017) Involvement of glyoxalases and glutathione reductase in conferring abiotic stress tolerance to Jatropha curcas L. Environ Exp Bot 134:141–150

    Article  CAS  Google Scholar 

  • Ondarza RN, Rendón JL, Ondarza M (1983) Glutathione reductase in evolution. J Mol Evol 19:371–375

    Article  CAS  PubMed  Google Scholar 

  • Planchon FAM, Boutron CF, Barbante C, Cozzi G, Gaspari V, Wolff EW, Ferrari CP, Cescon P (2002) Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth Planet Sci Lett 200:207–222

    Article  CAS  Google Scholar 

  • Racker E (1955) Glutathione reductase from bakers' yeast and beef liver. J Biol Chem 217:855–865

    CAS  PubMed  Google Scholar 

  • Seo J, Lee K, Rhee J, Hwang D, Lee Y, Park H, Ahn I, Lee J (2006) Environmental stressors (salinity, heavy metals, H2O2) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicus. Aquat Toxicol 80:281–289

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Tanaka K, Sano T, Ishizuka K (1994) Comparison of properties of leaf and root glutathione reductases from spinach. Physiol Plant 91:353–358

    Article  CAS  Google Scholar 

  • Tarrío N, Díaz PS, Cerdán ME, Siso MIG (2004) Isolation and characterization of two nuclear genes encoding glutathione and thioredoxin reductases from the yeast Kluyveromyces lactis. BBA 1678:170–175

    PubMed  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644

    Article  CAS  PubMed  Google Scholar 

  • Trivedi DK, Gill SS, Yadav S, Tuteja N (2013) Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis. Plant Signal Behav 8:e23021

    Article  PubMed  CAS  Google Scholar 

  • Yannarelli GG, Fernández-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Mano J, Tanaka K, Wang S, Zhang M, Deng X, Zhang S (2017) High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress. Physiol Plant 161:211–223

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liu S, Chen K (2013) Characterization and expression analysis of a glutathione reductase gene from Antarctic moss Pohlia nutans. Plant Mol Biol Rep 31:1068–1076

    Article  CAS  Google Scholar 

  • Zhou Y, Zhou S, Yu H, Li J, Xia Y, Li B, Wang X, Wang P (2016) Cloning and characterization of filamentous fungal S-nitrosoglutathione reductase from Aspergillus nidulans. J Microbiol Biotechnol 26:928–937

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou Y, Jin G, Ye M, Zou H, Zhao Z (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Technologies R & D Program of Shandong (Grant Nos. 2016ZDJQ0206, 2019GHY112047), Science and Technology Project of Weihai (WH20140209), and Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (Grant No. HIT.IBRSEM.2013037 and HIT.NSRIF.2016085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangfeng Kan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shi, C., Chen, G. et al. Characterization of recombinant glutathione reductase from Antarctic yeast Rhodotorula mucilaginosa. Polar Biol 42, 2249–2258 (2019). https://doi.org/10.1007/s00300-019-02603-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-019-02603-3

Keywords

Navigation