Advertisement

Reproductive biology of the ascidians Styela rustica and Halocynthia pyriformis from Kongsfjorden, Svalbard, Arctic

  • Luciana FerreroEmail author
  • Natalia Servetto
  • Jürgen Laudien
  • Ricardo Sahade
Original Paper
  • 20 Downloads

Abstract

Ascidians are abundant and well-represented members of worldwide benthic communities, including Antarctica and the Arctic. These organisms exhibit different reproductive patterns usually related to a latitudinal gradient, as do many marine invertebrate species. Reproductive seasonality varies from one or two annual peaks in cold and temperate water species to continuous reproduction throughout the year in warm water species. Styela rustica (Linnaeus 1767) and Halocynthia pyriformis (Rathke 1806) are solitary species with external fertilization and a wide distribution range, from the North Atlantic to the Arctic. The reproductive patterns of these two species were assessed for Arctic populations by year-round sampling and structural analysis of the gonads. Both species are hermaphrodites and showed marked seasonality in oocyte maturity and spawning; S. rustica peaked during the boreal summer and H. pyriformis in late spring. The two species also showed marked differences in mature oocyte sizes: H. pyriformis almost doubled those of S. rustica and, while spermatocytes of H. pyriformis were mature year-round, the maturity of male and female gametes was synchronized in S. rustica. The species thus showed an annual reproductive cycle coupled with a higher production period in the ecosystem, but also exhibited different strategies developed under the same environmental pressures.

Keywords

Polar ecosystems Tunicates Life cycles Reproductive ecology 

Notes

Acknowledgements

We would like to thank the SCUBA divers of AWI involved in sampling the species and installing the cages, namely Saskia Brandt, Daniel Carstensen, Wolfgang Nikolaus Probst, Bettina Saier, Philipp Schubert, Max Schwanitz, Christian Wecke, Ulrich Kunz, and José Velez. We are indebted to the station staff, Thorsten Wilhelm, Anne Hormes, Anne Theuerkauf, Jens Kuba and Kai Marholdt, as well as to Roland Neuber, who retrieved the cages and fixed the samples. We thank the three anonymous reviewers for their valuable suggestions. We are grateful for financial and logistic support provided by the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and the Secretaría de Ciencia y Tecnología (SECyT).

Funding

This study was funded by the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). The work was partially funded by PICTO (Ref 36326 and 2010–0019) (ANPCyT-DNA) and the Secretaría de Ciencia y Tecnología (SECyT 05/I602).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

(1) All authors agree to its submission and the corresponding author has been authorized by co-authors. (2) This article has not been published before and is not concurrently being considered for publication elsewhere. (3) This article does not violate any copyright or other personal proprietary right of any person or entity and it contains no abusive, defamatory, obscene, or fraudulent statements, nor any other statements that are unlawful in any way.

Supplementary material

300_2019_2570_MOESM1_ESM.docx (11.4 mb)
Supplementary file1 (DOCX 11658 kb)

References

  1. Arneborg L (2004) Turnover times for the waters above sill level in Gullmar Fjord. Cont Shelf Res 24:443–460.  https://doi.org/10.1016/j.csr.2003.12.005 CrossRefGoogle Scholar
  2. Azovsky A, Garlitska L, Chertoprud E (2016) Multi-scale taxonomic diversity of marine harpacticoids: does it differ at high and low latitudes? Mar Biol 163:1–12CrossRefGoogle Scholar
  3. Barnes D, Clarke A (1998) Seasonality of polypide recycling and sexual reproduction in some erect Antarctic bryozoans. Mar Biol 131:647–658.  https://doi.org/10.1007/s002270050357 CrossRefGoogle Scholar
  4. Becerro M, Turon X (1992) Reproductive cycles of the Ascidians Microcosmus sabatieri and Halocynthia papillosa in the Northwestern Mediterranean. Mar Ecol 13:363–373.  https://doi.org/10.1111/j.1439-0485.1992.tb00360.x CrossRefGoogle Scholar
  5. Beszczyjska-Möller A, Weslawski JM, Walczowski W, Zajaczkowski M (1997) Estimation of glacial meltwater discharge into Svalbard coastal waters. Oceanologia 39(3)Google Scholar
  6. Beuchel F, Gulliksen B (2008) Temporal patterns of benthic community development in an Arctic fjord (Kongsfjorden, Svalbard): results of a 24-year manipulation study. Polar Biol 31:913–924.  https://doi.org/10.1007/s00300-008-0429-9 CrossRefGoogle Scholar
  7. Bingham BL (1997) Light cycles and gametogenesis in three temperate ascidian species. Invertebr Biol 116:61–70.  https://doi.org/10.2307/3226925 CrossRefGoogle Scholar
  8. Bishop JDD, Ryland JS (1991) Storage of exogenous sperm by the compound ascidian Diplosoma listerianum. Mar Biol 108:111–118.  https://doi.org/10.1007/BF01313478 CrossRefGoogle Scholar
  9. Brandner MM, Stübner E, Reed AJ, Gabrielsen TM, Thatje S (2017) Seasonality of bivalve larvae within a high Arctic fjord. Polar Biol 40:263–276.  https://doi.org/10.1007/s00300-016-1950-x CrossRefGoogle Scholar
  10. Brockington S, Peck LS, Tyler PA (2007) Gametogenesis and gonad mass cycles in the common circumpolar Antarctic echinoid Sterechinus neumayeri. Mar Ecol Prog Ser 330:139–147.  https://doi.org/10.3354/meps330139 CrossRefGoogle Scholar
  11. Carmack E, Wassmann P (2006) Food webs and physical–biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Prog Oceanogr 71:446–477.  https://doi.org/10.1016/j.pocean.2006.10.004 CrossRefGoogle Scholar
  12. Chen YT, Dai CF (1998) Sexual reproduction of the Ascidian Polycarpa cryptocarpa kroboja from the Northern Coast of Taiwan. Acta Oceanogr Taiwan 37:201–210Google Scholar
  13. Chiantore M, Cattaneo-Vietti R, Elia L, Guidetti M, Antonini M (2002) Reproduction and condition of the scallop Adamussium colbecki (Smith 1902), the sea-urchin Sterechinus neumayeri (Meissner 1900) and the sea-star Odontaster validus (Koehler 1911) at Terra Nova Bay (Ross Sea): different strategies related to inter-annual variations in food availability. Polar Biol 25:251–255.  https://doi.org/10.1007/s00300-001-0331-1 Google Scholar
  14. Clarke A (1996) Benthic marine habitats in Antarctica. Antar Res Ser 70:123–133CrossRefGoogle Scholar
  15. Conover W (1999) Practical Nonparametric Statistics. John Wiley and Sons, New YorkGoogle Scholar
  16. Demarchi M (2013) Genetic structure population of several species of ascidians (Tunicata, Ascidiacea) in two polar systems: south Shetland Islands, Antarctic and Kongsfjord, Spitsbergen, Arctic. Dissertation, Universidad Nacional de CórdobaGoogle Scholar
  17. Demarchi M, Chiappero M, Laudien J, Sahade R (2008) Population genetic structure of the ascidian Styela rustica at Kongsfjorden, Svalbard, Arctic. J Exp Mar Biol Ecol 364:29–34.  https://doi.org/10.1016/j.jembe.2008.06.022 CrossRefGoogle Scholar
  18. Dunton K (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7:183–189.  https://doi.org/10.1016/0169-5347(92)90070-R CrossRefGoogle Scholar
  19. Durante KM, Sebens KP (1994) Reproductive ecology of the ascidians Molgula citrina (Alder & Hancock, 1848) and Aplidium glabrum (Verrill, 1871) from the Gulf of Maine, U.S.A. Ophelia 39:1–21.  https://doi.org/10.1080/00785326.1994.10429898 CrossRefGoogle Scholar
  20. Eilertsen HC, Taasen JP, WesIawski JM (1989) Phytoplankton studies in the fjords of West Spitzbergen: physical environment and production in spring and summer. J Plankton Res 11:1245–1260.  https://doi.org/10.1093/plankt/11.6.1245 CrossRefGoogle Scholar
  21. Fetzer I, Arntz WE (2008) Reproductive strategies of benthic invertebrates in the Kara Sea (Russian Arctic): adaptation of reproduction modes to cold water. Mar Ecol Prog Ser 356:189–202.  https://doi.org/10.3354/meps07271 CrossRefGoogle Scholar
  22. Flores H, Atkinson A, Kawaguchi S et al (2012) Impact of climate change on Antarctic krill. Mar Ecol Prog Ser 458:1–19.  https://doi.org/10.3354/meps09831 CrossRefGoogle Scholar
  23. Grange LJ, Tyler PA, Peck LS, Cornelius N (2004) Long-term interannual cycles of the gametogenic ecology of the Antarctic brittle star Ophionotus victoriae. Mar Ecol Prog Ser 278:141–155.  https://doi.org/10.3354/meps278141 CrossRefGoogle Scholar
  24. Grange LJ, Tyler PA, Peck LS (2007) Multi-year observations on the gametogenic ecology of the Antarctic seastar Odontaster validus. Mar Biol 153:15–23.  https://doi.org/10.1007/s00227-011-1683-x CrossRefGoogle Scholar
  25. Grange LJ, Peck LS, Tyler PA (2011) Reproductive ecology of the circumpolar Antarctic nemertean Parborlasia corrugatus: no evidence for inter-annual variation. J Exp Mar Biol Ecol 404:98–107.  https://doi.org/10.1016/j.jembe.2011.04.011 CrossRefGoogle Scholar
  26. Gray JS (2001) Marine diversity: the paradigms in patterns of species richness examined. Sci Mar 65:41–56.  https://doi.org/10.3989/scimar.2001.65s241 Google Scholar
  27. Gustafsson M, Nordberg K (2001) Living (stained) benthic foraminiferal response to primary production and hydrography in the deepest part of the Gullmar Fjord, Swedishwest coast, with comparisons to Hoglund’s 1927 material. J Foraminifer Res 31:2–11.  https://doi.org/10.2113/0310002 CrossRefGoogle Scholar
  28. Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105.  https://doi.org/10.1016/j.jmarsys.2013.01.003 CrossRefGoogle Scholar
  29. Hop H, Pearson T, Hegseth EN et al (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208.  https://doi.org/10.3402/polar.v21i1.6480 CrossRefGoogle Scholar
  30. Jørgensen LL, Gulliksen B (2001) Rocky bottom fauna in Arctic Kongsfjord (Svalbard) studied by means of suction sampling and photography. Polar Biol 24:113–121.  https://doi.org/10.1007/s003000000182 CrossRefGoogle Scholar
  31. Kanamori M, Baba K, Natsuike M, Goshima S (2017) Life history traits and population dynamics of the invasive ascidian, Ascidiella aspersa, on cultured scallops in Funka Bay, Hokkaido, northern Japan. J Mar Biol Assoc 97:387–399.  https://doi.org/10.1017/S0025315416000497 CrossRefGoogle Scholar
  32. Khalaman VV, Belyaeva DV, Flyachinskaya LP (2008) Effect of excretory-secretory products of some fouling organisms on settling and metamorphosis of the larvae of Styela rustica (Ascidiae). Russ J Mar Biol 34:170–173.  https://doi.org/10.1134/S106307400803005X CrossRefGoogle Scholar
  33. Kosobokova KN (1999) The reproductive cycle and life history of the Arctic copepod Calanus glacialis in the White Sea. Polar Biol 22:254–263.  https://doi.org/10.1007/s003000050418 CrossRefGoogle Scholar
  34. Koziorowska K, Kuliński K, Pempkowiak J (2017) Distribution and origin of inorganic and organic carbon in the sediments of Kongsfjorden, Northwest Spitsbergen, European Arctic. Cont Shelf Res 150:27–35.  https://doi.org/10.1016/j.csr.2017.08.023 CrossRefGoogle Scholar
  35. Kuklinski P, Berge J, McFadden L, Dmoch K, Zajaczkowski M, Nygård H, Piwosz K, Tatarek A (2013) Seasonality of occurrence and recruitment of Arctic marine benthic invertebrate larvae in relation to environmental variables. Polar Biol 36:549–560.  https://doi.org/10.1007/s00300-012-1283-3 CrossRefGoogle Scholar
  36. Lambert C, Brandt C (1967) The effect of light on the spawning of Ciona intestinalis. Biol Bull 132:222–228CrossRefGoogle Scholar
  37. Lambert CC (2009) Ascidian follicle cells: multifunctional adjuncts to maturation and development. Dev Growth Differ 51:677–686.  https://doi.org/10.1111/j.1440-169X.2009.01127.x CrossRefGoogle Scholar
  38. Lambert CC, Lambert IM, Lambert G (1995) Brooding strategies in solitary ascidians: Corella species from north and south temperate waters. Can J Zool 73:1666–1671.  https://doi.org/10.1139/z95-198 CrossRefGoogle Scholar
  39. Lambert G (2005) Ecology and natural history of the protochordates. Can J Zool 83:34–50.  https://doi.org/10.1139/z04-156 CrossRefGoogle Scholar
  40. Laudien J, Orchard JB (2012) The significance of depth and substratum incline for the structure of a hard-bottom sublittoral community in glacial Kongsfjorden (Svalbard, Arctic) an underwater imagery approach. Polar Biol 35:1057–1072.  https://doi.org/10.1007/s00300-011-1153-4 CrossRefGoogle Scholar
  41. Loeng H (1991) Features of the physical oceanographic conditions of the Barents Sea. Polar Res 10(1):5–18.  https://doi.org/10.3402/polar.v10i1.6723 CrossRefGoogle Scholar
  42. Lützen J (1960) The reproductive cycle and the larval anatomy of the ascidian Styela rustica. Vidensk Meddr Dansk Naturh 123:227–236Google Scholar
  43. Manni L, Zaniolo G, Burighel P (1993) Egg envelope cytodifferentiation in the colonial ascidian Botryllus schlosseri (Tunicata). Acta Zool 74:103–113.  https://doi.org/10.1111/j.1463-6395.1993.tb01226.x CrossRefGoogle Scholar
  44. Manríquez PH, Castilla JC (2005) Self-fertilization as an alternative mode of reproduction in the solitary tunicate Pyura chilensis. Mar Ecol Prog Ser 305:113–125.  https://doi.org/10.3354/meps305113 CrossRefGoogle Scholar
  45. Manríquez PH, Guiñez R, Olivares A, Clarke M, Castilla JC (2018) Effects of inter-annual temperature variability, including ENSO and post-ENSO events, on reproductive traits in the tunicate Pyura praeputialis. Mar Biol Res 1:16.  https://doi.org/10.1080/17451000.2018.1425456 Google Scholar
  46. Marshall DJ, Keough MJ (2003) Sources of variation in larval quality for free-spawning marine invertebrates: egg size and the local sperm environment. Invertebr Reprod Dev 44:63–70.  https://doi.org/10.1080/07924259.2003.9652554 CrossRefGoogle Scholar
  47. Marshall DJ, Keough MJ (2007) The evolutionary ecology of offspring size in marine invertebrates. Adv Mar Biol 53:1–60.  https://doi.org/10.1016/S0065-2881(07)53001-4 CrossRefGoogle Scholar
  48. Marshall DJ, Styan CA, Keough MJ (2000) Intraspecific co-variation between egg and body size affects fertilisation kinetics of free-spawning marine invertebrates. Mar Ecol Prog Ser 195:305–309.  https://doi.org/10.3354/meps195305 CrossRefGoogle Scholar
  49. McBride MM, Dalpadado P, Drinkwater KF et al (2014) Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries. ICES J Mar Sci 71:1934–1955.  https://doi.org/10.1093/icesjms/fsu002 CrossRefGoogle Scholar
  50. Millar RH (1971) The Biology of Ascidians. Adv Mar Biol 99:1–100.  https://doi.org/10.1016/S0065-2881(08)60341-7 Google Scholar
  51. Nagar LR, Shenkar N (2016) Temperature and salinity sensitivity of the invasive ascidian Microcosmus exasperatus Heller, 1878. Aquat Invasions 11:33–43.  https://doi.org/10.3391/ai.2016.11.1.04 CrossRefGoogle Scholar
  52. Nowak CA, Laudien J, Sahade R (2016) Rising temperatures and sea-ice-free winters affect the succession of Arctic macrozoobenthic soft-sediment communities (Kongsfjorden, Svalbard). Polar Biol 39:2097–2113.  https://doi.org/10.1007/s00300-016-1995-x CrossRefGoogle Scholar
  53. Orejas C, López-González PJ, Gili JM, Teixidó N, Gutt J, Arntz WE (2002) Distribution and reproductive ecology of the Antarctic octocoral Ainigmaptilon antarcticum in the Weddell sea. Mar Ecol Prog Ser 231:101–114.  https://doi.org/10.3354/meps231101 CrossRefGoogle Scholar
  54. Pearse JS, Mcclintock JB, Bosch I (1991) Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. Am Zool 31:65–80.  https://doi.org/10.1093/icb/31.1.65 CrossRefGoogle Scholar
  55. Piepenburg D (2005) Recent research on Arctic benthos: common notions need to be revised. Polar Biol 28:733–755.  https://doi.org/10.1007/s00300-005-0013-5 CrossRefGoogle Scholar
  56. Pineda MC, López-Legentil S, Turon X (2013) Year-round reproduction in a seasonal sea: biological cycle of the introduced ascidian Styela plicata in the western Mediterranean. Mar Biol 160:221–230.  https://doi.org/10.1007/s00227-012-2082-7 CrossRefGoogle Scholar
  57. Poltermann M, Hop H, Falk-Petersen S (2000) Life under Arctic sea ice—reproduction strategies of two sympagic (ice-associated) amphipod species, Gammarus wilkitzkii and Apherusa glacialis. Mar Biol 136:913–920.  https://doi.org/10.1007/s002270000307 CrossRefGoogle Scholar
  58. Ritzmann NF, Rocha RM, Roper JJ (2009) Sexual and asexual reproduction in Didemnum rodriguesi (Ascidiacea, Didemnidae). Iheringia Ser Zool 99:106–110.  https://doi.org/10.1590/S0073-47212009000100015 CrossRefGoogle Scholar
  59. Rius M, Pineda MC, Turon X (2009) Population dynamics and life cycle of the introduced ascidian Microcosmus squamiger in the Mediterranean Sea. Biol Invasions 11:2181–2194.  https://doi.org/10.1007/s10530-008-9375-2 CrossRefGoogle Scholar
  60. Romeis B (1989) Mikroskopische Technik. Urban und Schwarzenberg, MünchenGoogle Scholar
  61. Sabbadin A (1957) Il ciclo biologico di Ciona intestinalis (L.), Molgula manhattensis (de Kay) e Styela plicata (Lesueur) nella laguna veneta. Arch Oceanogr Limnol 11:1–28Google Scholar
  62. Sahade R (1999) Patterns and processes in an Antarctic epibenthic community: the case of Potter Cove. Dissertation, Universidad Nacional de CórdobaGoogle Scholar
  63. Sahade R, Stellfeldt A, Tatián M, Laudien J (2004a) Macro-epibenthic communities and diversity of Arctic Kongsfjorden, Svalbard, in relation to depth and substrate. Ber Polarforsch Meeresforsch 492:103–111Google Scholar
  64. Sahade R, Tatián M, Esnal G (2004b) Reproductive ecology of the ascidian Cnemidocarpa verrucosa at Potter Cove, South Shetland Islands, Antarctica. Mar Ecol Prog Ser 272:131–140.  https://doi.org/10.3354/meps272131 CrossRefGoogle Scholar
  65. Sciscioli M, Lepore E, Tursi A (1978) Relationship between Styela plicata (Les.) (Tunicata) settlement and spawning. Mem Biol Mar Oceanogr 8:65–75Google Scholar
  66. Servetto N, Torre L, Sahade R (2013) Reproductive biology of the Antarctic “sea pen” Malacobelemnon daytoni (Octocorallia, Pennatulacea, Kophobelemnidae). Polar Res 32(1):20040.  https://doi.org/10.3402/polar.v32i0.20040 CrossRefGoogle Scholar
  67. Servetto N, Sahade R (2016) Reproductive seasonality of the Antarctic sea pen Malacobelemnon daytoni (Octocorallia, Pennatulacea, Kophobelemnidae). PLoS ONE 11:1–16.  https://doi.org/10.1371/journal.pone.0163152 CrossRefGoogle Scholar
  68. Shenkar N (2012) Ascidian (Chordata, Ascidiacea) diversity in the Red Sea. Mar Biodivers 42:459–469.  https://doi.org/10.1007/s12526-012-0124-5 CrossRefGoogle Scholar
  69. Shenkar N, Loya Y (2008) The solitary ascidian Herdmania momus: native (Red Sea) versus non-indigenous (Mediterranean) populations. Biol Invasions 10:1431–1439.  https://doi.org/10.1007/s10530-008-9217-2 CrossRefGoogle Scholar
  70. Shmuel Y, Shenkar N (2017) Reproductive cycle and ecology of the tropical ascidian Halocynthia spinosa in the Red Sea. Mar Biol 164:1–12.  https://doi.org/10.1007/s00227-017-3179-9 CrossRefGoogle Scholar
  71. Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Chang Biol 16:3154–3163.  https://doi.org/10.1111/j.1365-2486.2010.02175.x Google Scholar
  72. Staver JM, Strathmann RR (2002) Evolution of fast development of planktonic embryos to early swimming. Biol Bull 203:58–69CrossRefGoogle Scholar
  73. Strathmann RR, Hughes TP, Kuris AM, Lindeman KC, Morgan SG, Pandolfi JM, Warner RR (2002) Evolution of local-recruitment and its consequences for marine populations. Bull Mar Sci 70:377–396Google Scholar
  74. Strathmann RR, Kendall LR, Marsh AG (2006) Embryonic and larval development of a cold adapted Antarctic ascidian. Polar Biol 29:495–501.  https://doi.org/10.1007/s00300-005-0080-7 CrossRefGoogle Scholar
  75. Svane I, Young C (1989) The ecology and behaviour of ascidian larvae. Oceanogr Mar Biol 27:45–90Google Scholar
  76. Svavarsson J (1990) Life cycle and population dynamics of the symbiotic copepod Lichomolgus canui Sars associated with the ascidian Halocynthia pyriformis (Rathke). J Exp Mar Biol Ecol 142:1–12.  https://doi.org/10.1016/0022-0981(90)90133-W CrossRefGoogle Scholar
  77. Svendsen H, Beszczynska-møller A, Hagen JO et al (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166.  https://doi.org/10.3402/polar.v21i1.6479 Google Scholar
  78. Thiyagarajan V, Qian P (2003) Effect of temperature, salinity and delayed attachment on development of the solitary ascidian Styela plicata (Lesueur). J Exp Mar Biol Ecol 290:133–146.  https://doi.org/10.1016/S0022-0981(03)00071-6 CrossRefGoogle Scholar
  79. Thorarinsdottir GG (1996) Gonad development, larval settlement and growth of Mytilus edulis L. in a suspended population in Hvalfjördur, south-west Iceland. Aquac Res 27(1):57–65CrossRefGoogle Scholar
  80. Tursi A, Matarrese A (1981) Phenomena of settling in Styela plicata (Les.) (Tunicata). Mem Biol Mar Oceanogr 11:117–130Google Scholar
  81. Voronkov A, Hop H, Gulliksen B (2013) Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden. Svalbard Polar Res 32:11208.  https://doi.org/10.3402/polar.v32i0.11208 CrossRefGoogle Scholar
  82. Voronkov A, Hop H, Gulliksen B (2016) Zoobenthic communities on hard-bottom habitats in Kongsfjorden, Svalbard. Polar Biol 39:2077–2095.  https://doi.org/10.1007/s00300-016-1935-9 CrossRefGoogle Scholar
  83. West AB, Lambert CC (1976) Control of spawning in the tunicate Styela plicata by variations in a natural light regime. J Exp Zool 195:263–270.  https://doi.org/10.1002/jez.1401950211 CrossRefGoogle Scholar
  84. Wong NA, McClary D, Sewell MA (2011) The reproductive ecology of the invasive ascidian, Styela clava, in Auckland Harbour, New Zealand. Mar Biol 158:2775–2785.  https://doi.org/10.1007/s00227-011-1776-6 CrossRefGoogle Scholar
  85. Yamaguchi M (1975) Growth and reproductive cycles of the marine fouling ascidians Ciona intestinalis, Styela plicata, Botrylloides violaceus, and Leptoclinum mitsukurii at Aburatsubo-Moroiso Inlet (Central Japan). Mar Biol 29:253–259.  https://doi.org/10.1007/BF00391851 CrossRefGoogle Scholar
  86. Yoshida M (1952) Some observations on the maturation of the sea urchin, Diadema setosum. Annot Zool Jpn 25:265–271Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luciana Ferrero
    • 1
    Email author
  • Natalia Servetto
    • 1
    • 2
  • Jürgen Laudien
    • 3
  • Ricardo Sahade
    • 1
    • 2
  1. 1.Ecología Marina, Facultad de Ciencias Exactas, Físicas Y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Diversidad Y Ecología Animal (IDEA)Ecosistemas Marinos PolaresCórdobaArgentina
  3. 3.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations