Advertisement

Phytoplankton composition and bloom formation in unexplored nearshore waters of the western Antarctic Peninsula

  • Martina MascioniEmail author
  • Gastón O. Almandoz
  • Adrián O. Cefarelli
  • Allison Cusick
  • Martha E. Ferrario
  • Maria Vernet
Original Paper
  • 78 Downloads

Abstract

The western Antarctic Peninsula (WAP) is one of the most productive regions in the Southern Ocean. However, little is known about the phytoplankton composition in nearshore waters, in fjords and channels between 63º and 67°S, where Antarctic krill and baleen whales are conspicuous. This study represents the first attempt to describe spatial and temporal composition of the phytoplankton community (species, cell concentration, phytoplankton biomass) in twelve relatively unexplored nearshore sites of the WAP. Sampling was carried out in the frame of a Citizen Science project during late summer of 2016 and during the spring–summer 2016–2017. Species identification and enumeration were performed by light and scanning electron microscopy and phytoplankton carbon biomass was estimated by using cell-volume conversion. The highest phytoplankton abundance and biomass values were found in December-January, and were mainly represented by nanophytoflagellates (2–20 µm). Cryptophytes were more abundant in early summer and prasinophyceans in late summer. The abundance of large bloom-forming diatoms was unexpectedly low. Three blooming flagellated taxa were found during the sampling season, chronologically: Pyramimonas sp. in Neko Harbor (March 3, 2016, 1.4 × 106 cells L−1, and 327 µgC L−1), cryptophytes in Wilhelmina Bay (December 14, 2016, 6.4 × 106 cells L−1, and 97.5 µgC L−1) and unidentified unarmored dinoflagellates near Danco Island (December 18, 2016, 9.5 × 106 cells L−1, and 1597 µgC L−1). The last one represents, as far as we know, the first record of a dinoflagellate bloom in the WAP. It is to note that blooming organisms, analyzed morphologically, do not coincide with previously described Antarctic species.

Keywords

Western Antarctic Peninsula Citizen Science Diatoms Cryptophyta Pyramimonas sp. Unarmored dinoflagellate bloom 

Notes

Acknowledgements

This study was supported by Grant PIP 0122 from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) to G.O.A, a doctoral fellowship from CONICET to M.M., and a U.S. National Science Foundation (NSF) Public Participation in STEM (Science, Technology, Engineering, Math) Research (PPSR) award PLR-1443705 to M.V. We would especially like to thank our partners with the International Association of Antarctica Tour Operators (IAATO), the participating passengers, the crew, and the science personnel on board Antarctic cruises MS Expedition operated by G Adventures and MS Hebridean Sky operated by Polar Latitudes for providing shiptime and samples in support of this research project during the 2016–2017 season. We also thank the reviewers for the comments, the manuscript has improved substantially.

Compliance with ethical standards

Conflict of interest

The authors declare that they do not have any conflicts of interest with the data presented in this scientific article.

References

  1. Abele D, Vazquez S, Buma AGJ et al (2017) Pelagic and benthic communities of the Antarctic ecosystem of Potter Cove: genomics and ecological implications. Mar Genomics 33:1–11.  https://doi.org/10.1016/j.margen.2017.05.001 CrossRefGoogle Scholar
  2. Alonso-González A, Orive E, David H et al (2014) Scaly green flagellates from Spanish Atlantic coastal waters: molecular, ultrastructural and pigment analyses. Bot Mar 57:379–402.  https://doi.org/10.1515/bot-2013-0108
  3. Arrigo KR, van Dijken GL, Alderkamp A-C et al (2017) Early spring phytoplankton dynamics in the Western Antarctic Peninsula. J Geophys Res Ocean 122:9350–9369.  https://doi.org/10.1002/2017JC013281 CrossRefGoogle Scholar
  4. Balech E (1958) Plancton de la Campaña Antártica Argentina 1954-1955. Physis 21:75–108Google Scholar
  5. Balech E (1976) Clave ilustrada de dinoflagelados antárticos. Publ Inst Antart Argent 11:1–79Google Scholar
  6. Bird DF, Karl DM (1991) Massive prasinophyte bloom in northern Gerlache Strait. Antarct J US 26:152–154Google Scholar
  7. Brett SJ, Perasso L, Wetherbee R (1994) Structure and development of the cryptomonad periplast: a review. Protoplasma 181:106–122.  https://doi.org/10.1007/BF01666391 CrossRefGoogle Scholar
  8. Chandler M, See L, Copas K et al (2017) Contribution of citizen science towards international biodiversity monitoring. Biol Conserv 213:280–294.  https://doi.org/10.1016/j.biocon.2016.09.004 CrossRefGoogle Scholar
  9. Clay BL, Kugrens P, Lee RE (1999) A revised classification of Cryptophyta. Bot J Linn Soc 131:131–151.  https://doi.org/10.1111/j.1095-8339.1999.tb01845.x CrossRefGoogle Scholar
  10. Cook AJ, Holland PR, Meredith MP et al (2016) Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353:283–286.  https://doi.org/10.1126/science.aae0017 CrossRefGoogle Scholar
  11. Daugbjerg N (2000) Pyramimonas tychotreta, sp. nov. (Prasinophyceae), a new marine species from Antarctica: light and electron microscopy of the motile stage and notes on growth rates. J Phycol 36:160–171.  https://doi.org/10.1046/j.1529-8817.2000.99157.x CrossRefGoogle Scholar
  12. Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317CrossRefGoogle Scholar
  13. De Salas MF, Laza-Martínez A, Hallegraeff GM (2008) Novel unarmored dinoflagellates from the toxigenic family Kareniaceae (Gymnodiniales): five new species of Karlodinium and one new Takayama from the Australian sector of the Southern Ocean. J Phycol 44:241–257.  https://doi.org/10.1111/j.1529-8817.2007.00458.x CrossRefGoogle Scholar
  14. Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172.  https://doi.org/10.1146/annurev-ecolsys-102209-144636 CrossRefGoogle Scholar
  15. Dierssen HM, Smith RC, Vernet M (2002) Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc Natl Acad Sci 99:1790–1795.  https://doi.org/10.1073/pnas.032206999 CrossRefGoogle Scholar
  16. Ducklow H, Fraser W, Meredith M et al (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26:190–203.  https://doi.org/10.5670/oceanog.2013.62 CrossRefGoogle Scholar
  17. Edler L, Elbrächter M (2010) The Utermöhl method for quantitative phytoplankton analysis. Microsc Mol Methods Quant Phytoplankton Anal 110:13–20Google Scholar
  18. Ferrario M, Sar E (1992) RACER: phytoplankton populations in the Gerlache Strait. Antarct J US 27:158–159Google Scholar
  19. Ferrario ME, Sar EA, Vernet M (1998) Chaetoceros resting spores in the Gerlache Strait, Antarctic Peninsula. Polar Biol 19:286–288.  https://doi.org/10.1007/s003000050247 CrossRefGoogle Scholar
  20. García-Muñoz C, Lubián LM, García CM et al (2013) A mesoscale study of phytoplankton assemblages around the South Shetland Islands (Antarctica). Polar Biol 36:1107–1123.  https://doi.org/10.1007/s00300-013-1333-5 CrossRefGoogle Scholar
  21. Garibotti I, Vernet M, Ferrario M et al (2003a) Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean). Mar Ecol Prog Ser 261:21–39.  https://doi.org/10.3354/meps261021 CrossRefGoogle Scholar
  22. Garibotti I, Vernet M, Kozlowski W, Ferrario M (2003b) Composition and biomass of phytoplankton assemblages in coastal Antarctic waters: a comparison of chemotaxonomic and microscopic analyses. Mar Ecol Prog Ser 247:27–42.  https://doi.org/10.3354/meps247027 CrossRefGoogle Scholar
  23. Garibotti IA, Vernet M, Ferrario ME (2005) Annually recurrent phytoplanktonic assemblages during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean). Deep Sea Res Part I Oceanogr Res Pap 52:1823–1841.  https://doi.org/10.1016/j.dsr.2005.05.003 CrossRefGoogle Scholar
  24. Garzio LM, Steinberg DK (2013) Microzooplankton community composition along the Western Antarctic Peninsula. Deep Sea Res Part I Oceanogr Res Pap 77:36–49.  https://doi.org/10.1016/j.dsr.2013.03.001 CrossRefGoogle Scholar
  25. Gast RJ, Moran DM, Beaudoin DJ et al (2006) Abundance of a novel dinoflagellate phylotype in the Ross Sea, Antarctica. J Phycol 42:233–242.  https://doi.org/10.1111/j.1529-8817.2006.00183.x CrossRefGoogle Scholar
  26. Gast RJ, Moran DM, Dennett MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol 9:39–45.  https://doi.org/10.1111/j.1462-2920.2006.01109.x CrossRefGoogle Scholar
  27. Gómez F, Moreira D, López-García P (2011) Advances on the study of dinoflagellates (Dinophyceae) with the molecular phylogeny. Hidrobiológica 21:343–364Google Scholar
  28. Gonçalves-Araujo R, de Souza MS, Tavano VM, Garcia CAE (2015) Influence of oceanographic features on spatial and interannual variability of phytoplankton in the Bransfield Strait, Antarctica. J Mar Syst 142:1–15.  https://doi.org/10.1016/j.jmarsys.2014.09.007 CrossRefGoogle Scholar
  29. Grange LJ, Smith CR (2013) Megafaunal communities in rapidly warming Fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity. PLoS ONE 8:e77917.  https://doi.org/10.1371/journal.pone.0077917 CrossRefGoogle Scholar
  30. Hargraves PE, Gardiner WE (1980) The life history of Pyramimonas amylifera Conrad (Prasinophyceae). J Plankton Res 2:99–108.  https://doi.org/10.1093/plankt/2.2.99 CrossRefGoogle Scholar
  31. Haywood AJ, Steidinger KA, Truby EW et al (2004) Comparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (Dinophyceae) from New Zealand. J Phycol 40:165–179.  https://doi.org/10.1046/j.1529-8817.2004.02149.x CrossRefGoogle Scholar
  32. Hill DRA (1991) A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30:170–188CrossRefGoogle Scholar
  33. Hillebrand H, Claus-Dieter D, Kirschtel D et al (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  34. Höfer J, Giesecke R, Hopwood MJ et al (2019) The role of water column stability and wind mixing in the production/export dynamics of two bays in the Western Antarctic Peninsula. Prog Oceanogr.  https://doi.org/10.1016/j.pocean.2019.01.005 Google Scholar
  35. Holm-Hansen O, Mitchell BG, Hewes CD, Karl DM (1989) Phytoplankton blooms in the vicinity of palmer station, Antarctica. Polar Biol 10:49–57.  https://doi.org/10.1007/BF00238290 CrossRefGoogle Scholar
  36. Hori T, Moestrup Ø, Hoffman LR (1995) Fine structural studies on an ultraplanktonic species of Pyramimonas, P. virginica (Prasinophyceae), with a discussion of subgenera within the genus Pyramimonas. Eur J Phycol 30:219–234.  https://doi.org/10.1080/09670269500651001 CrossRefGoogle Scholar
  37. Kim H, Doney SC, Iannuzzi RA et al (2016) Climate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica: an interdecadal (1993–2013) analysis. J Geophys Res Biogeosciences 121:2369–2389.  https://doi.org/10.1002/2015JG003311 CrossRefGoogle Scholar
  38. Laza-Martínez A, Arluzea J, Miguel I, Orive E (2012) Morphological and molecular characterization of Teleaulax gracilis sp. nov. and T. minuta sp. nov. (Cryptophyceae). Phycologia 51:649–661.  https://doi.org/10.2216/11-044.1 CrossRefGoogle Scholar
  39. López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603CrossRefGoogle Scholar
  40. Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170.  https://doi.org/10.1007/BF00007865 CrossRefGoogle Scholar
  41. Luo W, Li H, Gao S et al (2016) Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biol 39:605–616.  https://doi.org/10.1007/s00300-015-1815-8 CrossRefGoogle Scholar
  42. May SE, McClennen CE, Domack EW (1991) Diatom assemblages within surface waters of Andvord Bay, Antarctica. Antarct J US 26:112–115Google Scholar
  43. McFadden GI, Moestrup Ø, Wetherbee R (1982) Pyramimonas gelidicola sp. nov. (Prasinophyceae), a new species isolated from Antarctic sea ice. Phycologia 21:103–111CrossRefGoogle Scholar
  44. McFadden GI, Hill DRA, Wetherbee R (1986) A study of the genus Pyramimonas (Prasinophyceae) from southeastern Australia. Nord J Bot 6:209–234.  https://doi.org/10.1111/j.1756-1051.1986.tb00875.x CrossRefGoogle Scholar
  45. McKinley DC, Miller-Rushing AJ, Ballard HL et al (2017) Citizen science can improve conservation science, natural resource management, and environmental protection. Biol Conserv 208:15–28.  https://doi.org/10.1016/j.biocon.2016.05.015 CrossRefGoogle Scholar
  46. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579.  https://doi.org/10.4319/lo.2000.45.3.0569 CrossRefGoogle Scholar
  47. Mendes CRB, Tavano VM, Leal MC et al (2013) Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait (Antarctic Peninsula). Polar Biol 36:537–547.  https://doi.org/10.1007/s00300-012-1282-4 CrossRefGoogle Scholar
  48. Mendes CRB, Tavano VM, Dotto TS et al (2018) New insights on the dominance of cryptophytes in Antarctic coastal waters: a case study in Gerlache Strait. Deep Sea Res Part II Top Stud Oceanogr 149:161–170.  https://doi.org/10.1016/j.dsr2.2017.02.010 CrossRefGoogle Scholar
  49. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:1–5.  https://doi.org/10.1029/2005GL024042 Google Scholar
  50. Meredith MP, Brandon MA, Wallace MI et al (2008) Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: results from δ18O. Deep Res Part II Top Stud Oceanogr 55:309–322.  https://doi.org/10.1016/j.dsr2.2007.11.005 CrossRefGoogle Scholar
  51. Meredith MP, Stammerjohn SE, Venables HJ et al (2016) Changing distributions of sea ice melt and meteoric water west of the Antarctic Peninsula. Deep Sea Res Part II Top Stud Oceanogr 139:40–57.  https://doi.org/10.1016/j.dsr2.2016.04.019 CrossRefGoogle Scholar
  52. Moline MA, Claustre H, Frazer TK et al (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Chang Biol 10:1973–1980.  https://doi.org/10.1111/j.1365-2486.2004.00825.x CrossRefGoogle Scholar
  53. Montagnes DJS, Berges JA, Harrison PJ, Taylor FJR (1994) Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol Oceanogr 39:1044–1060.  https://doi.org/10.4319/lo.1994.39.5.1044 CrossRefGoogle Scholar
  54. Montes-Hugo M, Doney SC, Ducklow HW et al (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic peninsula. Science 323:1470–1473.  https://doi.org/10.1126/science.1164533 CrossRefGoogle Scholar
  55. Montresor M, Procaccini G, Stoecker DK (1999) Polarella glacialis, gen. nov., sp. nov.(Dinophyceae): Suessiaceae are still alive! J Phycol 35:186–197Google Scholar
  56. Moro I, La Rocca N, Dalla Valle L et al (2002) Pyramimonas australis sp. nov. (Prasinophyceae, Chlorophyta) from Antarctica: fine structure and molecular phylogeny. Eur J Phycol 37:103–114.  https://doi.org/10.1017/S0967026201003493 CrossRefGoogle Scholar
  57. Norris RE, Pienaar RN (1978) Comparative fine-structural studies on five marine species of Pyramimonas (Chlorophyta, Prasinophyceae). Phycologia 17:41–51CrossRefGoogle Scholar
  58. Novarino G (2003) A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). Hydrobiologia 502:225–270CrossRefGoogle Scholar
  59. Novarino G (2005) Nanoplankton protists from the western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea). Sci Mar 69:47–74.  https://doi.org/10.3989/scimar.2005.69n147 CrossRefGoogle Scholar
  60. Nowacek DP, Friedlaender AS, Halpin PN et al (2011) Super-aggregations of krill and humpback whales in Wilhelmina bay, Antarctic Peninsula. PLoS ONE 6:2–6.  https://doi.org/10.1371/journal.pone.0019173 CrossRefGoogle Scholar
  61. Pan JB, Vernet M, Reynolds RA, Mitchell GB (2019) The optical and biological properties of glacial meltwater in an Antarctic fjord. PLoS ONE 14:1–30.  https://doi.org/10.1371/journal.pone.0211107 Google Scholar
  62. Rodriguez F, Varela M, Zapata M (2002) Phytoplankton assemblages in the Gerlache and Bransfield Straits (Antarctic Peninsula) determined by light microscopy and CHEMTAX analysis of HPLC pigment data. Deep Sea Res Part II Top Stud Oceanogr 49:723–747.  https://doi.org/10.1016/S0967-0645(01)00121-7 CrossRefGoogle Scholar
  63. Rozema PD, Venables HJ, van de Poll WH et al (2017) Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol Oceanogr 62:235–252.  https://doi.org/10.1002/lno.10391 CrossRefGoogle Scholar
  64. Schloss IR, Wasilowska A, Dumont D et al (2014) On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: an exceptional feature? Limnol Oceanogr 59:195–210.  https://doi.org/10.4319/lo.2014.59.1.0195 CrossRefGoogle Scholar
  65. Schofield O, Saba G, Coleman K et al (2017) Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula. Deep Sea Res Part I Oceanogr Res Pap 124:42–54.  https://doi.org/10.1016/j.dsr.2017.04.014 CrossRefGoogle Scholar
  66. Scott FJ, Marchant HJ (2005) Cryptophytes. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Goanna Print, Canberra, pp 317–318Google Scholar
  67. Smith RC, Martinson DG, Stammerjohn SE et al (2008) Bellingshausen and western Antarctic Peninsula region: pigment biomass and sea-ice spatial/temporal distributions and interannual variabilty. Deep Sea Res Part II Top Stud Oceanogr 55:1949–1963.  https://doi.org/10.1016/j.dsr2.2008.04.027 CrossRefGoogle Scholar
  68. Stoecker DK, Buck KR, Putt (1992) Changes in the sea-ice brine community during the spring-summer transition, McMurdo Sound, Antarctica. I. Photosynthetic protists. Mar Ecol Prog Ser 84:265–278CrossRefGoogle Scholar
  69. Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346.  https://doi.org/10.1093/plankt/fbg096 CrossRefGoogle Scholar
  70. Taylor DL, Lee CC (1971) A new cryptomonad from antarctica: cryptomonas cryophila sp. nov. Arch Mikrobiol 75:269–280.  https://doi.org/10.1007/BF00407688 CrossRefGoogle Scholar
  71. Thomson PG, Mcminn A, Kiessling I et al (2006) Composition and succession of dinoflagellates and chrysophytes in the upper fast ice of Davis Station, East Antarctica. Polar Biol 29:337–345.  https://doi.org/10.1007/s00300-005-0060-y CrossRefGoogle Scholar
  72. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. SIL Commun 1953–1996(9):1–38.  https://doi.org/10.1080/05384680.1958.11904091 Google Scholar
  73. van den Hoff J, Bell E (2015) The ciliate Mesodinium rubrum and its cryptophyte prey in Antarctic aquatic environments. Polar Biol 38(8):1305–1310CrossRefGoogle Scholar
  74. Varela M, Fernandez E, Serret P (2002) Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep Sea Res Part II Top Stud Oceanogr 49:749–768.  https://doi.org/10.1016/S0967-0645(01)00122-9 CrossRefGoogle Scholar
  75. Vernet M (1992) RACER: predominance of cryptomonads and diatoms in the Gerlache Strait. Antarct J US 27:157–158Google Scholar
  76. Vernet M, Letelier RM, Karl DM (1991) RACER: phytoplankton growth rates in Northern Gerlache Strait during the spring bloom of 1989. Antarct J United States 26:154–156Google Scholar
  77. Vernet M, Martinson D, Iannuzzi R et al (2008) Primary production within the sea-ice zone west of the Antarctic Peninsula: I—sea ice, summer mixed layer, and irradiance. Deep Sea Res Part II Top Stud Oceanogr 55:2068–2085.  https://doi.org/10.1016/j.dsr2.2008.05.021 CrossRefGoogle Scholar
  78. Yoshine HADA (1970) The protozoan plankton of the Antarctic and Subantarctic seas. JARE scientific reports. Ser. E, Biol 31:1–51Google Scholar
  79. Zingone A, Forlani G, Percopo I, Montresor M (2011) Morphological characterization of Phaeocystis antarctica (Prymnesiophyceae). Phycologia 50:650–660.  https://doi.org/10.2216/11-36.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.División Ficología, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
  3. 3.Instituto de Desarrollo CosteroUniversidad Nacional de la Patagonia San Juan BoscoComodoro RivadaviaArgentina
  4. 4.Centro de Investigaciones y Transferencia Golfo San Jorge, CONICETComodoro RivadaviaArgentina
  5. 5.Integrative Oceanography Division, Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA

Personalised recommendations