Advertisement

A first insight into the structure and function of rhizosphere microbiota in Antarctic plants using shotgun metagenomic

  • Marco A. Molina-MontenegroEmail author
  • Gabriel I. Ballesteros
  • Eduardo Castro-Nallar
  • Claudio Meneses
  • Jorge Gallardo-Cerda
  • Cristian Torres-Díaz
Original Paper
  • 38 Downloads

Abstract

Antarctic vascular plants such as Deschampsia antarctica (Da) could generate more suitable micro-environmental conditions for the establishment of other plants like Colobanthus quitensis (Cq). Although positive plant–plant interactions have been shown to contribute to plant performance and establishment, little is known about how microorganisms might modulate those interactions, particularly in stressful environmental conditions. Several reports have focused on the possible ecological roles of microorganisms on vascular plants, but if rhizospheric microorganisms can impact positive interactions among Antarctic plants has been seldom studied. Here, we assessed the physical–chemical characteristics of rhizospheric soils from Cq growing alone or associated with Da (Cq + Da). In addition, we compared the rhizosphere microbiomes associated with Cq, either growing alone or associated with Da (Cq + Da), using a shotgun metagenomic DNA sequencing approach and using eggNOG for comparative and functional metagenomics. Overall, there were no differences among rhizospheric soils in terms of physical–chemical characteristics. On the other hand, our results show significant differences in terms of taxonomic diversity between rhizospheric soils. Functional annotation and pathway analysis showed that microorganisms from rhizospheric soil samples also have significant differences in gene abundance associated with several functional categories related to environmental tolerance and in metabolic pathways linked to osmotic stress, among others. Overall, this study provides foundational information which will allow to explore the biological impact of the rhizobiome and its functional mechanisms and molecular pathways on plant performance and help explain the concerted strategy deployed by Cq to inhabit and cope with the harsh conditions prevailing in Antarctica.

Keywords

Functional symbiosis Vascular antarctic plants Rhizobiome Gene ontology 

Notes

Acknowledgements

We thank Instituto Antártico Chileno (INACH) and the Chilean Navy for logistics and field support. All sampling was performed in accordance to international permits and authorizations given by INACH. ECN was funded by “CONICYT-FONDECYT de iniciación en la investigación 11160905″. MAM-M was funded by FONDECYT 1181034 and PII20150126. We would like to thank The George Washington University’s High-Performance Computing Facility, Colonial-One, for providing data storage, support, and computing power for genomic analyses (https://colonialone.gwu.edu). All supplementary material is available at https://figshare.com/s/5d7961c1859f33067dab.

Compliance with ethical standards

Conflict of interest

This study has been conducted in absence of conflicts of interest.

Supplementary material

300_2019_2556_MOESM1_ESM.doc (31 kb)
Supplementary material 1 (DOC 31 kb)
300_2019_2556_MOESM2_ESM.doc (28 kb)
Supplementary material 2 (DOC 28 kb)
300_2019_2556_MOESM3_ESM.doc (94 kb)
Supplementary material 3 (DOC 93 kb)
300_2019_2556_MOESM4_ESM.doc (34 kb)
Supplementary material 4 (DOC 34 kb)
300_2019_2556_MOESM5_ESM.xls (110 kb)
Supplementary material 5 (XLS 110 kb)
300_2019_2556_MOESM6_ESM.doc (52 kb)
Supplementary material 6 (DOC 51 kb)
300_2019_2556_MOESM7_ESM.doc (176 kb)
Supplementary material 7 (DOC 175 kb)
300_2019_2556_MOESM8_ESM.xls (2.6 mb)
Supplementary material 8 (XLS 2670 kb)
300_2019_2556_MOESM9_ESM.xls (194 kb)
Supplementary material 9 (XLS 194 kb)

References

  1. Acuña-Rodríguez IS, Hansen H, Gallardo-Cerda J, Atala C, Molina-Montenegro MA (2019) Antarctic extremophiles: biotechnological alternative to crop productivity in saline soils. Front Bioeng Biotechnol 7:22Google Scholar
  2. Aislabie J, Deslippe JR, Dymond JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand—condition and trends. Manaaki Whenua Press, Lincoln, pp 143–161Google Scholar
  3. Alberdi M, Bravo LA, Gutierrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486Google Scholar
  4. Amsellem L, Brouat C, Duron O, Porter SS, Vilcinskas A, Facon B (2017) Importance of microorganisms to macroorganisms invasions: is the essential invisible to the eye? Adv Ecol Res 57:99–146Google Scholar
  5. Arai W, Taniguchi T, Goto S, Moriya Y, Uehara H, Takemoto K et al (2018) MAPLE 2.3.0: an improved system for evaluating the functionomes of genomes and metagenomes. Biosci Biotechnol Biochem 24:1–3Google Scholar
  6. Atala C, Pertierra LR, Aragón P, Carrasco-Urra F, Lavín P, Gallardo-Cerda J, Ricote-Martínez N, Torres-Díaz C, Molina-Montenegro MA (2019) Positive interactions among native and invasive vascular plants in Antarctica: assessing the “nurse effect” at different spatial scales. Biol Invasions.  https://doi.org/10.1007/s10530-019-02016-7 Google Scholar
  7. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413Google Scholar
  8. Barrientos-Díaz L, Gidekel M, Gutiérrez-Moraga A (2008) Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv. World J Microbiol Biotechnol 24:2289–2296Google Scholar
  9. Beyer L, Bölter M, Seppelt RD (2000) Nutrient and thermal regime, microbial biomass, and vegetation of Antarctic soils in the Windmill islands region of east Antarctica (Wilkes Land). Arct Antarct Alp Res 32:30–39Google Scholar
  10. Bokhorst S, Convey P, Aerts R (2019) Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Curr Biol 29:1721–1727.e3Google Scholar
  11. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120Google Scholar
  12. Bottos EM, Woo AC, Zawar-Reza P, Pointing SB, Cary SC (2014) Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microb Ecol 67:120–128Google Scholar
  13. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60Google Scholar
  14. Chen W, Liu H, Wurihan-Gao Y, Card SD, Ren A (2017) The advantages of endophyte-infected over uninfected tall fescue in the growth and pathogen resistance are counteracted by elevated CO2. Sci Rep 7:28–30Google Scholar
  15. Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V et al (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 80:203–244Google Scholar
  16. De Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245Google Scholar
  17. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD et al (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325Google Scholar
  18. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930Google Scholar
  19. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364Google Scholar
  20. Frey-Klett P, Garbaye J, Tarkka GM (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36Google Scholar
  21. Fujinawa K, Asai Y, Miyahara M, Kouzuma A, Abe T, Watanabe K (2016) Genomic features of uncultured methylotrophs in activated-sludge microbiomes grown under different enrichment procedures. Sci Rep 6:1–9Google Scholar
  22. Gallardo-Cerda J, Levihuan J, Lavín P, Oses R, Atala C, Torres-Díaz C et al (2018) Antarctic rhizobacteria improve salt tolerance and physiological performance of the Antarctic vascular plants. Polar Biol 41:1973–1982Google Scholar
  23. Giauque H, Hawques CV (2013) Climate affects symbiotic fungal endophyte diversity and performance. Am J Bot 7:1435–1444Google Scholar
  24. González-Rocha G, Muñoz-Cartes G, Canales-Aguirre CB, Lima CA, Domínguez-Yévenes M, Bello-Toledo H et al (2017) Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): a phylogenetic analysis perspective. PLoS ONE 12:e0179390Google Scholar
  25. He Q, Bertness MK, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706Google Scholar
  26. Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 12:4063–4075Google Scholar
  27. Hughes KA, Cowan DA, Wilmotte A (2015) Protection of Antarctic microbial communities—“out of sight, out of mind”. Front Microbiol 6:1–6Google Scholar
  28. Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S et al (2016) MEGAN Community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:e1004957Google Scholar
  29. Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28:2223–2230Google Scholar
  30. Jovel J, Patterson J, Wang W, Hotte N, Keefe SO, Mitchel T et al (2016) Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 7:459Google Scholar
  31. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120Google Scholar
  32. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:16741676Google Scholar
  33. Lin W, Wu L, Lin S, Zhang A, Zhou M, Lin R et al (2013) Metaproteomic analysis of ratoon sugarcane rhizospheric soil. BMC Microbiol 13:135Google Scholar
  34. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI et al (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2:936–943Google Scholar
  35. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550Google Scholar
  36. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–546Google Scholar
  37. Mahoney AK, Yin C, Hulbert SH (2017) Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars. Front Plant Sci 8:132Google Scholar
  38. Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515Google Scholar
  39. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217Google Scholar
  40. Molina-Montenegro MA, Ricote-Martínez N, Muñoz-Ramírez C, Torres-Díaz C, Gómez-González S, Gianoli E (2013) Positive interactions between the lichen Usnea antarctica (Parmeliaceae) and the native flora in maritime Antarctica. J Veg Sci 24:463–472Google Scholar
  41. Molina-Montenegro MA, Oses R, Torres-Díaz C, Atala C, Zurita-Silva A, Ruiz-Lara S (2016) Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition. AoB Plants 8:plw062Google Scholar
  42. Moore DM (1970) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. II Taxonomy, distribution and relationships. Br Antarct Surv Bull 23:63–80Google Scholar
  43. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124Google Scholar
  44. Pereira SFF, Goss L, Dworkin J (2011) Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev 75:192–212Google Scholar
  45. Pointing SB, Büdel B, Convey P, Gillman LN, Körner C, Leuzinger S et al (2015) Biogeography of photoautotrophs in the high polar biome. Front Plant Sci 6:692Google Scholar
  46. Ramos P, Rivas N, Pollmann S, Casati P, Molina-Montenegro MA (2018) Hormonal and physiological changes driven by fungal endophytes increase Antarctic plant performance under UV-B radiation. Fungal Ecol 34:76–78Google Scholar
  47. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581Google Scholar
  48. Roberts PR, Newsham KK, Bardgett RD, Farrar JF, Jones DL (2009) Vegetation cover regulates the quantity, quality and temporal dynamics of dissolved organic carbon and nitrogen in Antarctic soils. Polar Biol 32:999–1008Google Scholar
  49. Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167Google Scholar
  50. Sielaff AC, Upton RN, Hofmockel KS, Xu X, Polley HW, Wilsey BJ (2018) Microbial community structure and functions differ between native and novel (exotic-dominated) grassland ecosystems in an 8-year experiment. Plant Soil 432:359–372Google Scholar
  51. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier Ltd., LondonGoogle Scholar
  52. Takami H, Arai W, Takemoto K, Uchiyama I, Taniguchi T (2015) Functional classification of uncultured “Candidatus caldiarchaeum subterraneum” using the MAPLE system. PLoS ONE 10:1–18Google Scholar
  53. Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J et al (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989Google Scholar
  54. Torres-Díaz C, Gallardo-Cerda J, Lavín P, Oses R, Carrasco-Urra F, Atala C et al (2016) Biological interactions and simulated climate change modulates the ecophysiological performance of Colobanthus quitensis in the Antarctic ecosystem. PLoS ONE 11:e0164844Google Scholar
  55. Upson R, Newsham KK, Bridge PD, Pearce DA, Read DJ (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol 2:184–196Google Scholar
  56. Vandenkoornhuyse P, Quaiser A, Duhamel M, Van Le A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. N Phytol 206:1196–1206Google Scholar
  57. Wang NF, Zhang T, Zhang F, Wang ET, He JF, Ding H et al (2015) Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing. Front Microbiol 6:1–11Google Scholar
  58. Yan Y, Kuramae EE, De Hollander M, Klinkhamer PGL, Van Veen JA (2017) Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J 11:56–66Google Scholar
  59. Yergeau E, Bokhorst S, Kang S, Zhou J, Greer CW, Aerts R et al (2012) Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J 6:692–702Google Scholar
  60. Zhang X, Chen Q, Han X (2014) Soil bacterial communities respond to mowing and nutrient addition in a steppe ecosystem. PLoS ONE 8:e84210Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marco A. Molina-Montenegro
    • 1
    • 2
    • 3
    Email author
  • Gabriel I. Ballesteros
    • 1
  • Eduardo Castro-Nallar
    • 4
  • Claudio Meneses
    • 5
    • 6
  • Jorge Gallardo-Cerda
    • 1
  • Cristian Torres-Díaz
    • 7
  1. 1.Centro de Ecología Molecular y Funcional, Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
  2. 2.Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  3. 3.Centro de Investigación de Estudios Avanzados del MauleUniversidad Católica del MauleTalcaChile
  4. 4.Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la VidaUniversidad Andrés BelloSantiagoChile
  5. 5.Centro de Biotecnología Vegetal, Facultad de Ciencias de la VidaUniversidad Andrés BelloSantiagoChile
  6. 6.Center for Genome RegulationFONDAPSantiagoChile
  7. 7.Grupo de Biodiversidad y Cambio Global (GBCG), Departamento de Ciencias BásicasUniversidad del Bío-BíoChillánChile

Personalised recommendations