Advertisement

Polar Biology

, Volume 42, Issue 6, pp 1131–1145 | Cite as

An analysis of maximum body size and designation of size categories for notothenioid fishes

  • Joseph T. EastmanEmail author
Original Paper

Abstract

There has been no comprehensive study of body size in notothenioid fishes. Therefore I evaluated maximum total length (TL) as an axis of the evolutionary radiation. Lengths are provided for 141 species that collectively range in maximum adult size from 5.7 cm (Harpagifer nybelini) to 225 cm (Dissostichus eleginoides), a 39-fold difference. For the 138 species analyzed, the mean length is 33.5 cm and the median is 26.6 cm. Based on 10 cm-bins, notothenioids are apportioned into small (< 10 cm), medium (10–39 cm), medium-large (40–91 cm), and large (> 200 cm) size categories. The 20–29 cm bin contains the most species (32%). Most species (71%) are of medium size, 21% of species are medium-large, and 7% and ≈ 1% are small and large, respectively. The median lengths vary among the five cryonotothenioid families as well as among eight clades (genera and families). Among families, median and mean lengths are smallest in the Harpagiferidae and largest in Channichthyidae. Among clades, Harpagifer has the smallest median length (8.3 cm) followed by Artedidraco (12.5 cm). Several middle-sized clades do not differ in median size: Patagonotothen, Trematomus, Pogonophryne, and Bathydraconidae. Two clades of medium-large size species, Notothenia and Channichthyidae, are of similar size. A significant but weak positive relationship exists between maximum length and maximum depth. With the exception of miniature species ( ≤ 1 cm), the 126 species of cryonotothenioids (the Antarctic clade) encompass the range in size categories in actinopterygians in general, and the disparity in maximum lengths among individual species indicates that body size is an axis of the radiation. I discuss the size of notothenioids relative to other teleosts, the ecological implications of large species in the food web, and the similarity of the cryonotothenioid axes of diversification to those of Lake Baikal sculpins.

Keywords

Antarctic Maximum total length Disparity in size Food web 

Notes

Acknowledgements

For answering my questions and providing information and advice, I am most grateful to Arcady Balushkin (Zoological Institute, Russian Academy of Sciences), Esteban Barrera-Oro (Instituto Antártico Argentino), Richard R. Eakin, Stuart Hanchet (National Institute of Water and Atmospheric Research, New Zealand), Mathias Hüne (Fundación Ictiológica, Santiago, Chile), Valentina G. Sideleva (Zoological Institute, Russian Academy of Sciences), Andrew Stewart (National Museum of New Zealand Te Paupa), and Olga Voskoboinikova (Zoological Institute, Russian Academy of Sciences). Three reviewers also provided extremely useful comments. The study is supported by NSF ANT 04-36190.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflicts of interest.

Ethical approval

The author has followed all applicable national and institutional guidelines for the collection, care, and ethical use of research organisms and material in the conduct of the research, specifically those of the Ohio University Institutional Animal Care and Use Committee.

References

  1. Abe T, Iwami T (1989) Notes on fishes from the stomachs of whales taken in the Antarctic. II. On Dissostichus and Ceratias, with an appendix (Japanese names of important Antarctic fishes). Proc NIPR Symp Polar Biol No. 2:78–82Google Scholar
  2. Ainley DG, Siniff DB (2009) The importance of Antarctic toothfish as prey of Weddell seals in the Ross Sea. Antarct Sci 21:317–327Google Scholar
  3. Ainley DG, Ballard G, Olmastroni S (2009) An apparent decrease in the prevalence of "Ross Sea Killer Whales" in the southern Ross Sea. Aquat Mamm 35:335–347Google Scholar
  4. Andrew TG, Hecht T, Heemstra PC, Lutjeharms JRE (1995) Fishes of the Tristan da Cunha Group and Gough Island, South Atlantic Ocean. Ichthyol Bull JLB Smith Inst Ichthyol No 63:1–41Google Scholar
  5. Andriashev AP (1965) A general review of the Antarctic fish fauna. In: Oye P, Mieghem J (eds) Biogeography and ecology in Antarctica, Monographiae Biologicae, vol XV. The Hague, Junk, pp 491–550Google Scholar
  6. Andriashev AP (1967) A review of the plunder fishes of the genus Pogonophryne Regan (Harpagiferidae) with description of five new species from the East Antarctic and South Orkney Islands. Biol Results Sov Antarct Exped 1955–1958(3):389–412Google Scholar
  7. Arana P (2009) Reproductive aspects of the Patagonian toothfish (Dissostichus eleginoides) off southern Chile. Lat Am J Aquat Res 37:381–394.  https://doi.org/10.3856/vol37-issue3-fulltext-9 Google Scholar
  8. Balushkin AV (1990) Review of blue notothenias of the genus Paranotothenia Balushkin (Nototheniidae) with description of a new species. J Ichthyol 30:132–147Google Scholar
  9. Balushkin AV (1991) Review of green notothenias, Gobionotothen, Balushkin (Nototheniidae) of the Antarctic and Subantarctic. J Ichthyol 31:42–55Google Scholar
  10. Balushkin AV (1993) Patagonotothen thompsoni sp. n., a new Patagonian notothen from the Strait of Magellan, South America (Pisces, Perciformes, Nototheniidae). Arch Fisch Wiss 41:223–229Google Scholar
  11. Balushkin AV (1999) Pogonophryne eakini sp. nova (Artedidraconidae, Notothenioidei, Perciformes): A new species of plunderfish from the Antarctic. J Ichthyol 39:799–802Google Scholar
  12. Balushkin AV (2013) A new species of Pogonophryne (Perciformes: Notothenioidei: Artedidraconidae) from the deep Ross Sea, Antarctica. Trudy Zool Inst 317:119–124Google Scholar
  13. Balushkin AV, Eakin RR (1998) A new toad plunderfish Pogonophryne fusca sp. nova (Fam. Artedidraconidae: Notothenioidei) with notes on species composition and species groups in the genus Pogonophryne Regan. J Ichthyol 38:574–579Google Scholar
  14. Balushkin AV, Korolkova ED (2013) New species of plunderfish Pogonophryne favosa sp. n. (Artedidraconidae, Notothenioidei, Perciformes) from the Cosmonauts Sea (Antarctica) with the description in artedidraconids of unusual anatomical structures—convexitas superaxillaris. J Ichthyol 53:562–574Google Scholar
  15. Balushkin AV, Spodareva VV (2013) Pogonophryne sarmentifera sp. nov. (Artedidraconidae; Notothenioidei; Perciformes)—the deep-water species of Antarctic plunderfishes from the Ross Sea (Southern Ocean). Trudy Zool Inst 317:275–281Google Scholar
  16. Balushkin AV, Spodareva VV (2013) Pogonophryne skorai sp. n. (Perciformes: Artedidraconidae), a new species of toadlike plunderfish from the Bransfield Strait and coastal waters of the South Shetland Islands, Antarctica. Russ J Mar Biol 39:190–196Google Scholar
  17. Balushkin AV, Stehmann M (1993) Results of the research cruises of FRV 'Walther Herwig' to South America. LXXII. Patagonotothen kreffti sp. n., a new Patagonian notothen from Burdwood Bank, Western South Atlantic (Pisces, Perciformes, Nototheniidae). Arch Fisch Wiss 41:211–221Google Scholar
  18. Balushkin AV, Petrov AF, Prutko VG (2010) Pogonophryne brevibarbata sp. nov. (Artedidraconidae, Notothenioidei, Perciformes)—A new species of toadlike plunderfish from the Ross Sea, Antarctica. Proc Zool Inst Acad Sci USSR 314:381–386Google Scholar
  19. Balushkin AV, Voskoboinikova OS (2011) Antarctic dragonfishes (Bathydraconidae). Explorations of the fauna of the seas, Vol 65 (73). Nauka, St. PetersburgGoogle Scholar
  20. Balushkin AV (1984) Morphological bases of the systematics and phylogeny of the nototheniid fishes. Academy of Sciences of the USSR, Zoological Institute, Leningrad:1–140. [In Russian; English translation for Division of Polar Programs, National Science Foundation, 1989, 153 pp; Available from National Technical Information Service, Springfield, VA, TT 1987-1001-1911.]Google Scholar
  21. Barneche DR, Robertson DR, White CR, Marshall DJ (2018) Fish reproductive-energy output increases disproportionately with body size. Science 360:642–644.  https://doi.org/10.1126/science.aao6868 PubMedGoogle Scholar
  22. Barrera-Oro E (2002) The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarct Sci 14:293–309Google Scholar
  23. Barrera-Oro ER, Lagger C (2010) Egg-guarding behaviour in the Antarctic bathydraconid dragonfish Parachaenichthys charcoti. Polar Biol 33:1585–1587Google Scholar
  24. Barretto AC, Sáez MB, Rico MR, Jaureguizar AJ (2011) Age determination, validation, and growth of Brazilian flathead (Percophis brasiliensis) from the southwest Atlantic coastal waters (34°–41°S). Lat Am J Aquat Res 39:297–305.  https://doi.org/10.3856/vol39-issue2-fulltext-11 Google Scholar
  25. Bowman LL, Kondrateva ES, Silow EA, Wilburn P, Yampolsky LY (2017) A capital breeder in a heterogeneous environment: Lipid reserves and RNA:DNA ratio in Lake Baikal's endemic Epischura. J Gt Lakes Res 43:280–288.  https://doi.org/10.1016/j.jglr.2017.01.010 Google Scholar
  26. Bray, DJ, Thompson, VJ (2017) Pseudaphritis urvillii in Fishes of Australia. https://fishesofaustralia.net.au/home/species/403. Accessed 09 Jun 2017
  27. Bray, DJ (2017) Bovichtus angustifrons in Fishes of Australia. https://fishesofaustralia.net.au/home/species/935. Accessed 09 Jun 2017
  28. Brickle P, Laptikhovsky V, MacKenzie K, Arkhipkin A (2003) The Falkland mullet Eleginops maclovinus: biology and fishery in Falkland Islands' waters. Fisheries Department, Falkland Islands Government, Stanley, Falkland IslandsGoogle Scholar
  29. Brickle P, Arkhipkin AI, Shcherbich ZN (2005) Age and growth in a temperate euryhaline notothenioid, Eleginops maclovinus from the Falkland Islands. J Mar Biol Assoc UK 85:1217–1221Google Scholar
  30. Brickle P, Laptikhovsky V, Arkhipkin A (2005) Reproductive strategy of a primitive temperate notothenioid Eleginops maclovinus. J Fish Biol 66:1044–1059Google Scholar
  31. Brickle P, Laptikhovsky V, Arkhipkin A, Portela J (2006) Reproductive biology of Patagonotothen ramsayi (Regan, 1913) (Pisces: Nototheniidae) around the Falkland Islands. Polar Biol 29:570–580Google Scholar
  32. Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, Rodriguez-Valera F (2018) Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Envir Microbiol 84(1):e02132.  https://doi.org/10.1128/aem.02132-17
  33. Calhaem I, Christoffel DA (1969) Some observations on the feeding habits of a Weddell seal, and measurements of its prey, Dissostichus mawsoni, at McMurdo Sound, Antarctica. N Z J Mar Freshw Res 3:181–190Google Scholar
  34. Casaux R (1998) The contrasting diet of Harpagifer antarcticus (Notothenioidei, Harpagiferidae) at two localities of the South Shetland Islands, Antarctica. Polar Biol 19:283–285Google Scholar
  35. Casaux R, Barrera-Oro E, Baroni A, Ramón A (2003) Ecology of inshore notothenioid fish from the Danco Coast, Antarctic Peninsula. Polar Biol 26:157–165Google Scholar
  36. Case JA (1992) Evidence from fossil vertebrates for a rich Eocene Antarctic marine environment. In: Kennett JP, Warnke DA (eds) Antarctic research series. The Antarctic paleoenvironment: a perspective on global change. Part 1, vol. 56. American Geophysical Union, Washington, pp 119–130Google Scholar
  37. Cione AL, Reguero MA, Elliot DH (2001) A large osteichthyan vertebra from the Eocene of Antarctica. Neues Jb Geol Paläontol Mh 2001:543–552Google Scholar
  38. Clarke A, Doherty N, DeVries AL, Eastman JT (1984) Lipid content and composition of three species of Antarctic fish in relation to buoyancy. Polar Biol 3:77–83Google Scholar
  39. Collette BB (2002) Swordfish. Family Xiphiidae. In: Collette BB, Klein-MacPhee G (eds) Bigelow and Schroeder's Fishes of the Gulf of Maine. Smithsonian Institution Press, Washington, DC, pp 509–514Google Scholar
  40. Collins MA, Shreeve RS, Fielding S, Thurston MH (2008) Distribution, growth, diet and foraging behaviour of the yellow-fin notothen Patagonotothen guntheri (Norman) on the Shag Rocks shelf (Southern Ocean). J Fish Biol 72:271–286Google Scholar
  41. Collins MA, Brickle P, Brown J, Belchier M (2010) The Patagonian toothfish: Biology, ecology and fishery. In: Lesser M (ed) Advances in Marine Biology, Vol 58. Elsevier Academic Press, San Diego, pp 227–300.  https://doi.org/10.1016/s0065.2881(10)58004.0
  42. Cziko PA, Cheng C-HC (2006) A new species of nototheniid (Perciformes: Notothenioidei) fish from McMurdo Sound, Antarctica. Copeia 4:752–759Google Scholar
  43. Daniels RA (1981) Cryothenia peninsulae, a new genus and species of nototheniid fish from the Antarctic Peninsula. Copeia 3:558–562Google Scholar
  44. des Clers S, Nolan CP, Baranowski R, Pompert J, (1996) Preliminary stock assessment of the Patagonian toothfish longline fishery around the Falkland Islands. J Fish Biol 49(Suppl A):145–156Google Scholar
  45. DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–331Google Scholar
  46. Duhamel G (1989) Ichtyofaune des îles Saint-Paul et Amsterdam (Océan Indien Sud). Més Bull Mus Hist Nat Marseille 49:21–47Google Scholar
  47. Duhamel G, Gasco N, Davaine P (2005) Poissons des îles Kerguelen et Crozet. Guide régional de l'océan Austral. Muséum national d'Histoire naturelle, ParisGoogle Scholar
  48. Eakin RR (1990) Artedidraconidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 332–356Google Scholar
  49. Eakin RR, Balushkin AV (1998) A new species of toadlike plunderfish Pogonophryne orangiensis sp. nova (Artedidraconidae, Notothenioidei) from the Weddell Sea. Antarctica. J Ichthyol 38:800–803Google Scholar
  50. Eakin RR, Balushkin AV (2000) A new species of Pogonophryne (Pisces: Perciformes: Artedidraconidae) from East Antarctica. Proc Biol Soc Wash 113:264–268Google Scholar
  51. Eakin RR, Eastman JT (1998) New species of Pogonophryne (Pisces, Artedidraconidae) from the Ross Sea, Antarctica. Copeia 4:1005–1009Google Scholar
  52. Eakin RR, Eastman JT, Near TJ (2009) A new species and a molecular phylogenetic analysis of the Antarctic fish genus Pogonophryne (Notothenioidei: Artedidraconidae). Copeia 4:705–713Google Scholar
  53. Eakin RR, Eastman JT, Matallanas J (2008) New species of Pogonophryne (Pisces, Artedidraconidae) from the Bellingshausen Sea, Antarctica. Polar Biol 31:1175–1179Google Scholar
  54. Eakin RR, Riginella E, La Mesa M (2015) A new species of Artedidraco (Pisces: Artedidraconidae) from the Weddell Sea, Antarctica. Polar Biol 38:1597–1603.  https://doi.org/10.1007/s00300-015-1721-0 Google Scholar
  55. Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  56. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107Google Scholar
  57. Eastman JT (2017) Bathymetric distributions of notothenioid fishes. Polar Biol 40:2077–2095.  https://doi.org/10.1007/s00300-017-2128-x Google Scholar
  58. Eastman JT, DeVries AL (1981) Buoyancy adaptations in a swim-bladderless Antarctic fish. J Morphol 167:91–102Google Scholar
  59. Eastman JT, Eakin RR (1999) Fishes of the genus Artedidraco (Pisces, Artedidraconidae) from the Ross Sea, Antarctica, with the description of a new species and a colour morph. Antarct Sci 11:13–22Google Scholar
  60. Eastman JT, Hubold G (1999) The fish fauna of the Ross Sea, Antarctica. Antarct Sci 11:93–304Google Scholar
  61. Eastman JT, Witmer LM, Ridgely RC, Kuhn KL (2014) Divergence in skeletal mass and bone morphology in Antarctic notothenioid fishes. J Morphol 275:841–861.  https://doi.org/10.1002/jmor.20258 PubMedGoogle Scholar
  62. Eisert R, Ensor P, Currey R (2014) Killer whale studies, McMurdo Sound, Ross Sea, Antarctica, Jan-Feb 2014. J Cetacean Res Manag SC/65b/SM06:1–12Google Scholar
  63. Eshenroder RL, Sideleva VG, Todd TN (1999) Functional convergence among pelagic sculpins of Lake Baikal and deepwater ciscoes of the Great Lakes. J Gt Lakes Res 25:847–855Google Scholar
  64. Fernández DA, Ceballos SG, Malanga GF, Boy CC, Vanella FA (2012) Buoyancy of sub-Antarctic notothenioids including the sister lineage of all other notothenioids (Bovichtidae). Polar Biol 35:99–106Google Scholar
  65. Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737Google Scholar
  66. Gomon M, Last PR (2008) Family Bovichtidae Thornfishes. In: Gomon M, Bray D, Kuiter R (eds) Fishes of Australia's Southern Coast. New Holland, Sydney, pp 667–669Google Scholar
  67. Gon O (1990) Bathydraconidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 364–380Google Scholar
  68. Gon O, Heemstra P (eds) (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, GrahamstownGoogle Scholar
  69. Gosse J-P (1966) Poissons recoltes par l'expedition antarctique belge IRIS 1965. Bull Inst R Sci Nat Belg 42:1–16Google Scholar
  70. Goto A, Yokoyama R, Sideleva VG (2015) Evolutionary diversification in freshwater sculpins (Cottoidea): a review of two major adaptive radiations. Environ Biol Fish 98:307–335.  https://doi.org/10.1007/s10641-014-0262-7 Google Scholar
  71. Grant PR, Grant BR (2008) How and why species multiply: the radiation of Darwin's finches. Princeton University Press, PrincetonGoogle Scholar
  72. Hanchet S, Dunn A, Parker S, Horn P, Stevens D, Mormede S (2015) The Antarctic toothfish (Dissostichus mawsoni): biology, ecology, and life history in the Ross Sea region. Hydrobiologia 761:397–414.  https://doi.org/10.1007/s10750-015-2435-6 Google Scholar
  73. Hardy GS (1988) A revision of Bovichtus Cuvier, 1831 (Pisces: Bovichthyidae) from Australasia, with description of a new deepwater species from the New Zealand Subantarctic. J Nat Hist 22:1639–1655Google Scholar
  74. Harris JH, Bond NR, Closs GP, Gehrke PC, Nicol SJ, Ye Q (2013) Dynamics of populations. In: Humphries P, Walker K (eds) Ecology of Australian freshwater fishes. Australia, CSIRO Publishing, Collingwood, pp 223–244Google Scholar
  75. Hart TJ (1946) Report on trawling surveys on the Patagonian continental shelf. Discov Rep 23:223–408Google Scholar
  76. Helfman GS, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology: evolution, and ecology, 2nd edn. Wiley-Blackwell, Chichester, UKGoogle Scholar
  77. Hüne M, Vega R (2015) Spatial variation in the diet of Patagonotothen tessellata (Pisces, Nototheniidae) from the fjords and channels of southern Chilean Patagonia. Polar Biol 38:1613–1622.  https://doi.org/10.1007/s00300-015-1726-8 Google Scholar
  78. Hüne M, Vega R (2016) Feeding habits in two sympatric species of Notothenioidei, Patagonotothen cornucola and Harpagifer bispinus, in the Chilean Patagonian channels and fjords. Polar Biol 39:2253–2262.  https://doi.org/10.1007/s00300-016-1892-3 Google Scholar
  79. Hüne M, Davis E, Murcia S, Gutiérrez D, Haro D (2018) Trophic relationships of a subtidal fish assemblage in the Francisco Coloane Coastal Marine Protected Area, southern Chilean Patagonia. Polar Res 37:1435107.  https://doi.org/10.1080/17518369.2018.1435107 Google Scholar
  80. Hureau J-C (1990) Harpagiferidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 357–363Google Scholar
  81. Iwami T (1985) Osteology and relationships of the family Channichthyidae. Mem Natl Inst Polar Res 36:1–69Google Scholar
  82. Iwami T, Kock K-H (1990) Channichthyidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 381–399Google Scholar
  83. Jones CD et al (2008) Diversity, relative abundance, new locality records and population structure of Antarctic demersal fishes from the northern Scotia Arc islands and Bouvetøya. Polar Biol 31:1481–1497Google Scholar
  84. Knouft JH, Page LM (2003) The evolution of body size in extant groups of North American freshwater fishes: speciation, size distributions, and Cope's rule. Am Nat 161:413–421Google Scholar
  85. Kock K-H (1992) Antarctic fish and fisheries. Cambridge University Press, CambridgeGoogle Scholar
  86. Kock K-H (2005) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review. Part I. Polar Biol 28:862–895Google Scholar
  87. Kock K-H, Jones CD (2002) The biology of the icefish Cryodraco antarcticus Dollo, 1900 (Pisces, Channichthyidae) in the southern Scotia Arc (Antarctica). Polar Biol 25:416–424Google Scholar
  88. Kock K-H, Jones CD, Wilhelms S (2000) Biological characteristics of Antarctic fish stocks in the southern Scotia Arc region. CCAMLR Sci 7:1–41Google Scholar
  89. Kock K-H, Gröger J, Jones CD (2013) Interannual variability in the feeding of ice fish (Notothenioidei, Channichthyidae) in the southern Scotia Arc and the Antarctic Peninsula region (CCAMLR subareas 48.1 and 48.2). Polar Biol 36:1451–1462Google Scholar
  90. Kontula T, Kirilchik SV, Väinölä R (2003) Endemic diversification of the monophyletic cottoid fish species flock in Lake Baikal explored with mtDNA sequencing. Mol Phylogenet Evol 27:143–155.  https://doi.org/10.1016/s1055-7903(02)00376-7 PubMedGoogle Scholar
  91. Kriwet J, Engelbrecht A, Mörs T, Reguero M, Pfaff C (2016) Ultimate Eocene (Priabonian) chondrichthyans (Holocephali, Elasmobranchii) of Antarctica. J Vert Paleontol 36:e1160911.  https://doi.org/10.1080/02724634.2016.1160911
  92. Kunzmann A, Zimmermann C (1992) Aethotaxis mitopteryx, a high-Antarctic fish with benthopelagic mode of life. Mar Ecol Prog Ser 88:33–40Google Scholar
  93. La Mesa M, Vacchi M (1997) Morphometric analysis of Cryodraco specimens (Notothenioidei: Channichthyidae) from Terra Nova Bay, Ross Sea. Cybium 21:363–368Google Scholar
  94. La Mesa M, Vacchi M, Castelli A, Diviacco G (1997) Feeding ecology of two nototheniid fishes, Trematomus hansoni and Trematomus loennbergii, from Terra Nova Bay, Ross Sea. Polar Biol 17:62–68Google Scholar
  95. La Mesa M, Cattaneo-Vietti R, Vacchi M (2006) Species composition and distribution of the Antarctic plunderfishes (Pisces, Artedidraconidae) from the Ross Sea off Victoria Land. Deep-Sea Res II 53:1061–1070Google Scholar
  96. La Mesa M, Catalano B, Kock K-H, Jones CD (2012) Age and growth of the Antarctic dragonfish Parachaenichthys charcoti (Pisces, Bathydraconidae) from the southern Scotia Arc. Polar Biol 35:1545–1553Google Scholar
  97. La Mesa M, Donato F, Riginella E, Mazzoldi C (2018) Life history traits of a poorly known pelagic fish, Aethotaxis mitopteryx (Perciformes, Notothenioidei) from the Weddell Sea. Polar Biol 41:1777–1788.  https://doi.org/10.1007/s00300-018-2318-1 Google Scholar
  98. La Mesa M, Riginella E, Donato F, Mazzoldi C (2018) Life history traits of rare Antarctic dragonfishes from the Weddell Sea. Antarct Sci 30:289–297.  https://doi.org/10.1017/s0954102018000317 Google Scholar
  99. Laptikhovsky VV, Arkhipkin AI (2003) An impact of seasonal squid migrations and fishing on the feeding spectra of subantarctic notothenioids Patagonotothen ramsayi and Cottoperca gobio around the Falkland Islands. J Appl Ichthyol 19:35–39Google Scholar
  100. Laptikhovsky V, Fetisov A (1999) Scavenging by fish of discards from the Patagonian squid fishery. Fisheries Res 41:93–97Google Scholar
  101. Laptikhovsky V, Arkhipkin A, Brickle P (2006) Distribution and reproduction of the Patagonian toothfish Dissostichus eleginoides Smitt around the Falkland Islands. J Fish Biol 68:849–861Google Scholar
  102. Last PR, Balushkin AV, Hutchins JB (2002) Halaphritis platycephala (Notothenioidei: Bovichtidae): a new genus and species of temperate icefish from southeastern Australia. Copeia 2002:433–440Google Scholar
  103. Lenky C, Eisert R, Oftedal OT, Metcalf V (2012) Proximate composition and energy density of nototheniid and myctophid fish in McMurdo Sound and the Ross Sea, Antarctica. Polar Biol 35:717–724.  https://doi.org/10.1007/s00300-011-1116-9 Google Scholar
  104. Licandeo RR, Barrientos CA, González MT (2006) Age, growth rates, sex change and feeding habits of notothenioid fish Eleginops maclovinus from the central-southern Chilean coast. Environ Biol Fish 77:51–61Google Scholar
  105. Lombarte A, Olaso I, Bozzano A (2003) Ecomorphological trends in the Artedidraconidae (Pisces: Perciformes: Notothenioidei) of the Weddell Sea. Antarct Sci 15:211–218Google Scholar
  106. Losos JB (2009) Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. University of California Press, BerkeleyGoogle Scholar
  107. McClain CR, Balk MA, Benfield MC, Branch TA et al (2015) Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ 3:e715.  https://doi.org/10.7717/peerj.715 PubMedPubMedCentralGoogle Scholar
  108. Merrett NR, Haedrich RL (1997) Deep-sea demersal fish and fisheries. Chapman & Hall, LondonGoogle Scholar
  109. Miller RG (1993) History and Atlas of the fishes of the Antarctic Ocean. Foresta Institute for Ocean and Mountain Studies, Carson City, NevadaGoogle Scholar
  110. Moreno CA, Jara HF (1984) Ecological studies on fish fauna associated with Macrocystis pyrifera belts in the south of Fueguian Islands, Chile. Mar Ecol Prog Ser 15:99–107Google Scholar
  111. Moyle PB, Cech JJ Jr (2004) Fishes: an introduction to Ichthyology, 5th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  112. Murillo C, Oyarzún C (2002) Variación ontogenética en la dieta de Patagonotothen longipes (Steindachner 1876) (Perciformes: Nototheniidae) en el fiordo de Castro, Chiloe. Gayana 66:219–224Google Scholar
  113. Navarro J, Pequeño G (1979) Peces litorales de los archipielagos de Chiloé y Los Chonos, Chile. Rev Biol Mar 16:255–309Google Scholar
  114. Near TJ, Dornburg A, Harrington RC, Oliveira C, Pietsch TW, Thacker CE, Satoh TP, Katayama E, Wainwright PC, Eastman JT, Beaulieu JM (2015) Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evol Biol 15:109.  https://doi.org/10.1186/s12862-015-0362-9
  115. Near TJ, MacGuigan DJ, Parker E, Struthers CD, Jones CD, Dornburg A (2018) Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations. Mol Phylogenet Evol 129:268–279.  https://doi.org/10.1016/j.ympev.2018.09.001 PubMedGoogle Scholar
  116. Nelson JS (2006) Fishes of the World, 4th edn. Wiley, HobokenGoogle Scholar
  117. Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the wWorld, 5th edn. Wiley, HobokenGoogle Scholar
  118. Neyelov AV, Prirodina VP (2006) Description of Harpagifer permitini sp. nova (Harpagiferidae) from the sublittoral zone of South Georgia and redescription of the littoral H. georgianus Nybelin. J Ichthyol 46:1–12Google Scholar
  119. Norman JR (1937) Coast fishes. Part II. The Patagonian region. Discov Rep 16:1–150Google Scholar
  120. Olaso I, Rauschert M, De Broyer C (2000) Trophic ecology of the family Artedidraconidae (Pisces: Osteichthyes) and its impact on the eastern Weddell Sea benthic system. Mar Ecol Prog Ser 194:143–158Google Scholar
  121. Paxton CGM (1998) A cumulative species description curve for large open water marine animals. J Mar Biol Assoc UK 78:1389–1391.  https://doi.org/10.1017/S0025315400044611 Google Scholar
  122. Perez Comesaña JE, Clavin P, Arias K, Riestra C (2014) Total length estimation of the Brazilian flathead Percophis brasiliensis, using morphometric relationships of skull, pectoral girdle bones, otoliths and specific body measures, in Argentine waters. J Appl Ichthyol 30:377–380.  https://doi.org/10.1111/jai.12244 Google Scholar
  123. Pitman RL, Ensor P (2003) Three forms of killer whales (Orcinus orca) in Antarctic waters. J Cetacean Res Manag 5:131–139Google Scholar
  124. Pitman RL, Fearnbach H, Durban JW (2018) Abundance and population status of Ross Sea killer whales (Orcinus orca, type C) in McMurdo Sound, Antarctica: evidence for impact by commercial fishing? Polar Biol 41:781–792.  https://doi.org/10.1007/s00300-017-2239-4 Google Scholar
  125. Ponganis P, Stockard TK (2007) The Antarctic toothfish: how common a prey for Weddell seals? Antarct Sci 19:441–442Google Scholar
  126. Prirodina VP (2000) On the systematic position of littoral and deep-water species of the genus Harpagifer (Harpagiferidae, Notothenioidei) from Macquarie Island with a description of two new species. J Ichthyol 40:488–494Google Scholar
  127. Prirodina VP (2002) Redescription of littoral and deep-sea species of the genus Harpagifer (Harpagiferidae, Notothenioidei) off islands of the Indian Ocean Sector of the Southern Ocean with the description of a new species. J Ichthyol 42:701–712Google Scholar
  128. Prirodina VP (2004) Harpagifer crozetensis sp. nova (Harpagiferidae, Notothenioidei), a new species from the littoral of the Crozet Islands (Indian Ocean Sector of the Antarctic). J Ichthyol 44:395–399Google Scholar
  129. Raadik TA (2008) Family Pseudaphritidae—Temperate Icefishes. In: Gomon M, Bray D, Kuiter R (eds) Fishes of Australia's Southern Coast. Reed New Holland, Sydney, pp 669–670Google Scholar
  130. Regan CT (1913) The Antarctic fishes of the Scottish National Antarctic Expedition. Trans R Soc Edinb 49:229–292Google Scholar
  131. Reid WDK, Clarke S, Collins MA, Belchier M (2007) Distribution and ecology of Chaenocephalus aceratus (Channichthyidae) around South Georgia and Shag Rocks (Southern Ocean). Polar Biol 30:1523–1533Google Scholar
  132. Roberts TR (2012) Systematics, biology, and distribution of the species of the oceanic oarfish genus Regalecus (Teleostei, Lampridiformes, Regalecidae). Mém Mus Natl Hist Nat 202:1–268Google Scholar
  133. Salas L, Nur N, Ainley D, Burns JM, Rotella J, Ballard G (2017) Coping with the loss of large, energy-dense prey: a potential bottleneck for Weddell Seals in the Ross Sea. Ecol Appl 27:10–25Google Scholar
  134. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  135. Schwarzhans W, Mörs T, Engelbrecht A, Reguero M, Kriwet J (2017) Before the freeze: otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei). J Syst Palaeontol 15:147–170.  https://doi.org/10.1080/14772019.2016.1151958 PubMedGoogle Scholar
  136. Shandikov GA, Eakin RR (2013) Pogonophryne neyelovi, a new species of Antarctic short-barbeled plunderfish (Perciformes, Notothenioidei, Artedidraconidae) from the deep Ross Sea. ZooKeys 296:59–77.  https://doi.org/10.3897/zookeys.296.4295 Google Scholar
  137. Shandikov GA, Kratkiy VY (1990) Capture of a second specimen of Gvozdarus svetovidovi (Nototheniidae) in the Sodruzhestvo Sea (East Antarctica). J Ichthyol 30:143–147Google Scholar
  138. Shandikov GA, Eakin RR, Usachev S (2013) Pogonophryne tronio, a new species of Antarctic short-barbeled plunderfish (Perciformes: Notothenioidei: Artedidraconidae) from the deep Ross Sea with new data on Pogonophryne brevibarbata. Polar Biol 36:273–289Google Scholar
  139. Sideleva VG (1996) Comparative character of the deep-water and inshore cottoid fishes endemic to Lake Baikal. J Fish Biol 49(Suppl A):192–206Google Scholar
  140. Sideleva V (2000) The ichthyofauna of Lake Baikal, with special reference to its zoogeographical relations. In: Rossiter A, Kawanabe H (eds) Ancient lakes: biodiversity, ecology and evolution. Advances in ecological research, vol 31. Academic Press, San Diego, pp 81–96Google Scholar
  141. Skóra KE (1995) Acanthodraco dewitti gen. et sp. n. (Pisces, Bathydraconidae) from Admiralty Bay (King George Island, South Shetland Islands, Antarctica). Arch Fish Mar Res 42:283–289Google Scholar
  142. Spodareva VV, Balushkin AV (2014) Description of a new species of plunderfish genus Pogonophryne (Perciformes: Artedidraconidae) from the Bransfield Strait (Antarctica) with a key for the identification of species of the group "marmorata". J Ichthyol 54:1–6Google Scholar
  143. Stanley SM (1973) An explanation for Cope's Rule. Evolution 27:1–26Google Scholar
  144. Stewart AL (2015) Family Bovichthyidae. In: Roberts CD, Stewart AL, Struthers CD (eds) The fishes of New Zealand, vol 4. Te Papa Press, Wellington, pp 1434–1437Google Scholar
  145. Stewart AL (2015) Family Nototheniidae. In: Roberts CD, Stewart AL, Struthers CD (eds) The fishes of New Zealand. Te Papa Press, Wellington, pp 1438–1442Google Scholar
  146. Streelman JT, Danley PD (2003) The stages of vertebrate evolutionary radiation. Trends Ecol Evol 18:126–131Google Scholar
  147. Streelman JT, Alfaro M, Westneat MW, Bellwood DR, Karl SA (2002) Evolutionary history of the parrotfishes: biogeography, ecomorphology, and comparative diversity. Evolution 56:961–971Google Scholar
  148. Sutton CP, Horn PL (2011) A preliminary assessment of age and growth of Antarctic silverfish (Pleuragramma antarcticum) in the Ross Sea, Antarctica. CCAMLR Sci 18:75–86Google Scholar
  149. Teterina VI, Sukhanova LV, Kirilchik SV (2010) Molecular divergence and speciation of Baikal oilfish (Comephoridae): facts and hypotheses. Mol Phylogenet Evol 56:336–342Google Scholar
  150. Vacchi M, La Mesa M (1995) The diet of the Antarctic fish Trematomus newnesi Boulenger, 1902 (Nototheniidae) from Terra Nova Bay, Ross Sea. Antarct Sci 7:37–38Google Scholar
  151. Vacchi M, La Mesa M, Castelli A (1994) Diet of two coastal nototheniid fish from Terra Nova Bay, Ross Sea. Antarct Sci 6:61–65Google Scholar
  152. Vacchi M, Williams R, La Mesa M (1996) Reproduction in three species of fish from the Ross Sea and Mawson Sea. Antarct Sci 8:185–192Google Scholar
  153. Vacchi M, La Mesa M, Greco M (2000) The coastal fish fauna of Terra Nova Bay, Ross Sea, Antarctica. In: Faranda FM, Guglielmo L, Ianora A (eds) Ross sea ecology: Italiantartide expeditions (1987–1995). Springer, Berlin, pp 457–468Google Scholar
  154. Wainwright PC, Richard BA (1995) Predicting patterns of prey use from morphology of fishes. Environ Biol Fish 44:97–113Google Scholar
  155. Williams R (1988) The nearshore fishes of Macquarie Island. Pap Proc R Soc Tasmania 122:233–245Google Scholar
  156. Winter A, Laptikhovsky V, Brickle P, Arkhipkin A (2010) Rock cod (Patagonotothen ramsayi (Regan, 1913)) stock assessment in the Falkland Islands. Falkland Islands Fisheries Department, Stanley. https://www.fig.gov.fk/fisheries/publications/finfish
  157. Yukhov VL (1970) New data on the distribution and biology of Dissostichus mawsoni Norm. in Antarctic high latitudes. J Ichthyol 10:422–424Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical SciencesOhio UniversityAthensUSA

Personalised recommendations