Advertisement

Polar Biology

, Volume 42, Issue 6, pp 1093–1105 | Cite as

New records of invasive mammals from the sub-Antarctic Cape Horn Archipelago

  • Elke SchüttlerEmail author
  • Ramiro D. Crego
  • Lorena Saavedra-Aracena
  • Eduardo A. Silva-Rodríguez
  • Ricardo Rozzi
  • Nicolás Soto
  • Jaime E. Jiménez
Original Paper

Abstract

The southernmost archipelago of the Americas is dominated by invasive mammals that outnumber their native counterparts. Despite the relatively low ability of most invasive mammals to cross cold sea water channels, invaders are apparently colonizing new islands. Our objective was to provide an assessment of the expansion of invasive mammals within these sub-Antarctic ecosystems, determine whether human-mediated movement of invasive species is a plausible dispersal mechanism, and identify areas likely to be colonized in the near future. We report a decade of fieldwork (2006–2017) in 44 sites on 13 islands within the Cape Horn Biosphere Reserve including opportunistic and systematic camera trapping, carnivore diet, questionnaires, small mammal trapping, and walks/transects. We found new records of invasive mammals on seven islands, particularly for American mink (Neovison vison) and American beaver (Castor canadensis). Interviews with fishermen showed that mink, dogs (Canis familiaris), and small rodents are likely passengers in vessels. Finally, species distribution models revealed that the putative invasive-free Cape Horn National Park (55°S) is suitable for several invasive species, suggesting a high risk of invasion if species are introduced. We conclude that it is urgent to implement barriers to dispersal to prevent further invasion. In the case of dogs and cats (Felis catus), the first step should be control actions that target pet owners. Finally, we highlight the need of systematic, long-term biodiversity monitoring and citizen science in the Cape Horn Archipelago and common conservation guidelines for the terrestrial sub-Antarctic ecosystems.

Keywords

Assisted dispersal Conservation Free-ranging domestic animals Islands Monitoring Range expansion Vertebrates 

Notes

Acknowledgements

We are grateful to the local community and fishermen of the Cape Horn Biosphere Reserve, who shared their knowledge with us, to A Mansilla, and numerous volunteers who helped in the field. Our special thanks go to the Chilean navy for facilitating maritime transport to the navy posts. We would also like to thank the National Forest Corporation (CONAF) for their support, especially X Álvarez, A Silva, L Ramírez and M Lopetegui. N Ward, E Butikofer, A Pietrek, and two anonymous reviewers made valuable comments on an earlier version of the manuscript. The University of North Texas (UNT), the Institute of Ecology and Biodiversity (IEB), Pew Charitable Trusts, and Corporación de Fomento de la Producción (CORFO, 16BPER-67004) funded the study. E Schüttler and E Silva were supported by the Comisión Nacional de Investigación Científica y Tecnológica (PAI-CONICYT No. 79140024 and FONDECYT Iniciación No. 11171006), and R Rozzi by the Millennium Scientific Initiative (No. P05-002) and Basal-CONICYT (No. PFB-23).

Compliance with ethical standards

Conflict of interest

We have no conflict of interest to declare.

Ethical approval

Permission to work in protected areas was provided by the National Forest Corporation (CONAF, Resolutions 711/2014 and 158/2017). The Agriculture and Livestock Service (SAG, Resolutions 6518/2013, 8547/2014, and 1728/2015) issued the permits for rodent trapping. The Scientific Ethical Committee of the University of Magallanes, Chile, certified ethical approval of the questionnaires with navy families (Certificate 25/05/2015), whereas the local Chilean navy authority provided a formal permission (Resolution 119/2015).

Supplementary material

300_2019_2497_MOESM1_ESM.docx (44 kb)
Supplementary file1 (DOCX 44 kb)
300_2019_2497_MOESM2_ESM.tif (7.8 mb)
Supplementary file2 (TIF 8019 kb)
300_2019_2497_MOESM3_ESM.xlsx (66 kb)
Supplementary file3 (XLSX 66 kb)
300_2019_2497_MOESM4_ESM.docx (25 kb)
Supplementary file4 (DOCX 24 kb)
300_2019_2497_MOESM5_ESM.tif (12.9 mb)
Supplementary file5 (TIF 13192 kb)

References

  1. Amos J (2018) Rats driven from South Georgia's wildlife paradise. BBC News. https://www.bbc.com/news/science-environment-44046472. Accessed 31 May 2018
  2. Anderson CB, Rozzi R, Torres-Mura JC, McGehee SM, Sherriffs MF, Schüttler E, Rosemond AD (2006) Exotic vertebrate fauna in the remote and pristine sub-Antarctic Cape Horn Archipelago, Chile. Biodivers Conserv 15:3295–3313CrossRefGoogle Scholar
  3. Anderson CB, Pastur GM, Lencinas MV, Wallem PK, Moorman MC, Rosemond AD (2009) Do introduced North American beavers Castor canadensis engineer differently in southern South America? An overview with implications for restoration. Mammal Rev 39:33–52CrossRefGoogle Scholar
  4. Anderson LG, Rocliffe S, Haddaway NR, Dunn AM (2015) The role of tourism and recreation in the spread of non-native species: a systematic review and meta-analysis. PLoS ONE 10(10):e0140833CrossRefPubMedPubMedCentralGoogle Scholar
  5. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species climate impact models under climate change. Glob Change Biol 11:1504-1513CrossRefGoogle Scholar
  6. Barbet-Massin M, Rome Q, Villemant C, Courchamp F (2018) Can species distribution models really predict the expansion of invasive species? PLoS ONE 13(3):e0193085CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett 12:20150623CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chandler M, See L, Copas K et al (2017) Contribution of citizen science towards international biodiversity monitoring. Biol Conserv 213:280–294CrossRefGoogle Scholar
  9. Crego RD (2017) Niche expansion of an invasive predator (Neovison vison), prey response, and facilitative interactions with other invasive mammals at the Southern end of the Americas: Conservation challenges and potential solutions. Dissertation, University of North TexasGoogle Scholar
  10. Crego RD, Jiménez JE, Rozzi R (2015) Expansión de la invasión del visón norteamericano (Neovison vison) en la Reserva de la Biosfera Cabo de Hornos, Chile. An Inst Patagon 43:157–162Google Scholar
  11. Crego RD, Jiménez JE, Rozzi R (2016) A synergistic trio of invasive mammals? Facilitative interactions among beavers, muskrats, and mink at the southern end of the Americas. Biol Invasions 18:1923–1938CrossRefGoogle Scholar
  12. Crego RD, Jiménez JE, Rozzi R (2018a) Macro-and micro-habitat selection of small rodents and their predation risk perception under a novel invasive predator at the southern end of the Americas. Mammal Res 63:267–275CrossRefGoogle Scholar
  13. Crego RD, Jiménez JE, Rozzi R (2018b) Potential niche expansion of the American mink invading a remote island free of native-predatory mammals. PLoS ONE 13:e0194745CrossRefPubMedPubMedCentralGoogle Scholar
  14. Crowley SL, Hinchliffe S, McDonald RA (2017) Conflict in invasive species management. Front Ecol Environ 15:133–141CrossRefGoogle Scholar
  15. Danielsen F, Burgess ND, Balmford A (2005) Monitoring matters: examining the potential of locally-based approaches. Biodivers Conserv 14:2507–2542CrossRefGoogle Scholar
  16. Danielsen F, Burgess ND, Balmford A et al (2009) Local participation in natural resource monitoring: a characterization of approaches. Conserv Biol 23:31–42CrossRefPubMedGoogle Scholar
  17. de Villiers MS, Cooper J, Carmichael N et al (2006) Conservation management at Southern Ocean Islands: towards the development of best-practice guidelines. Polarforschung 75:113–131Google Scholar
  18. Doherty T, Glen AS, Nimmo D, Ritchie E, Dickman C (2016) Invasive predators and global biodiversity loss. PNAS 113:11261–11265CrossRefPubMedGoogle Scholar
  19. Dubois S, Fenwick N, Ryan EA et al (2017) International consensus principles for ethical wildlife control. Conserv Biol 31:753–760CrossRefPubMedGoogle Scholar
  20. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342CrossRefGoogle Scholar
  21. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  22. Estévez RA, Anderson CB, Pizarro JC, Burgman MA (2015) Clarifying values, risk perceptions, and attitudes to resolve or avoid social conflicts in invasive species management. Conserv Biol 29:19–30CrossRefPubMedGoogle Scholar
  23. Farr TG, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. https://doi.org/10.1029/2005RG000183
  24. Fasola L, Muzio J, Chehébar C, Cassini M, Macdonald DW (2011) Range expansion and prey use of American mink in Argentinean Patagonia: dilemmas for conservation. Eur J Wildl Res 57:283–294CrossRefGoogle Scholar
  25. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  26. Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18:2255–2261CrossRefGoogle Scholar
  27. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72CrossRefPubMedGoogle Scholar
  28. Gallardo M (2017) Prestación del servicio control de visón americano (Neovison vison) en isla Navarino. Periodos 2016–2017. Informe final. SAG-FNDR Gobierno Regional, Magallanes y Antártica ChilenaGoogle Scholar
  29. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27CrossRefGoogle Scholar
  30. Green JS, Gipson PS (1994) Feral dogs. In: Hygnstrom SE, Timm RM, Larson GE (eds) The handbook: prevention and control of wildlife damage. Paper 35. University of Nebraska-Lincoln, Lincoln, pp 77–81Google Scholar
  31. Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435CrossRefPubMedPubMedCentralGoogle Scholar
  32. Harrington LA, Hays GC, Fasola L, Harrington AL, Righton D, Macdonald DW (2012) Dive performance in a small-bodied, semi-aquatic mammal in the wild. J Mammal 93:198–210CrossRefGoogle Scholar
  33. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  34. Hobbs RJ, Arico S, Aronson J et al (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7CrossRefGoogle Scholar
  35. Holmes ND, Campbell KJ, Keit BS, Griffiths R, Beek J, Donlan CJ, Broome KG (2015) Reporting costs for invasive vertebrate eradications. Biol Invasions 17:2913–2925CrossRefGoogle Scholar
  36. Howald G, Donlan CJ, Galván JP et al (2007) Invasive rodent eradication on islands. Conserv Biol 21:1258–1268CrossRefPubMedGoogle Scholar
  37. Huertas-Herrera A, Toro Manríquez M, Muñoz R, Anderson CB, Martínez Pastur G (2017) Potencial presencia del castor norteamericano en el Parque Nacional Cabo de Hornos. An Inst Patagon 45:67–71Google Scholar
  38. Hughes KA, Pertierra LR, Molina-Montenegro MA, Convey P (2015) Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers Conserv 24:1031–1055CrossRefGoogle Scholar
  39. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18CrossRefGoogle Scholar
  40. Hulme PE, Bacher S, Kenis M et al (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414CrossRefGoogle Scholar
  41. Jeschke JM, Strayer DL (2005) Invasion success of vertebrates in Europe and North America. PNAS 102:7198–7202CrossRefPubMedGoogle Scholar
  42. Jeschke JM, Bacher S, Blackburn TM et al (2014) Defining the impact of non-native species. Conserv Biol 28:1188–1194CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jones HP, Tershy BR, Zavaleta ES, Croll DA, Keitt BS, Finkelstein ME, Howald GR (2008) Severity of the effects of invasive rats on seabirds: a global review. Conserv Biol 22:16–26CrossRefPubMedGoogle Scholar
  44. Jones HP, Holmes ND, Butchart SH et al (2016) Invasive mammal eradication on islands results in substantial conservation gains. PNAS 113:4033–4038CrossRefPubMedGoogle Scholar
  45. Kol H (2018) Los riesgos de la expansión salmonera en la Patagonia Chilena. Estado de la salmonicultura intensiva en la Región de Magallanes. Asociación Interamericana para la Defensa del Ambiente (AIDA), San FranciscoGoogle Scholar
  46. Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789CrossRefGoogle Scholar
  47. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69CrossRefGoogle Scholar
  48. Marshall K, White R, Fischer A (2007) Conflicts between humans over wildlife management: on the diversity of stakeholder attitudes and implications for conflict management. Biodivers Conserv 16:3129–3146CrossRefGoogle Scholar
  49. Martins TLF, Brooke MDL, Hilton GM, Farnsworth S, Gould J, Pain DJ (2006) Costing eradications of alien mammals from islands. Anim Conserv 9:439–444CrossRefGoogle Scholar
  50. McKinley DC, Miller-Rushing A, Ballard R et al (2017) Citizen science can improve conservation science, natural resource management, and environmental protection. Biol Conserv 208:15–28CrossRefGoogle Scholar
  51. Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069CrossRefGoogle Scholar
  52. Mittermeier RA, Mittermeier CG, Brooks TM, Pilgrim JD, Konstant WR, da Fonseca GAB, Kormos C (2003) Wilderness and biodiversity conservation. PNAS 18:10309–10313CrossRefGoogle Scholar
  53. Morters MK, McKinley TJ, Restif O et al (2014) The demography of free-roaming dog populations and applications to disease and population control. J Appl Ecol 51:1096–1106CrossRefPubMedPubMedCentralGoogle Scholar
  54. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  55. Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197CrossRefPubMedGoogle Scholar
  56. Pisano E (1977) Fitogeografía de Fuego-Patagonia chilena. I. Comunidades vegetales entre las latitudes 52 y 56 S. An Inst Patagon 8:121–250Google Scholar
  57. Quillfeldt P, Schenk I, McGill RAR et al (2008) Introduced mammals coexist with seabirds at New Island, Falkland Islands: abundance, habitat preferences, and stable isotope analysis of diet. Polar Biol 31:333–349CrossRefGoogle Scholar
  58. R Development Core Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  59. Rovero F, Zimmermann F, Berzi D, Meek P (2013) “Which camera trap type and how many do I need?” A review of camera features and study designs for a range of wildlife research applications. Hystrix, It J Mamm 24:148–156Google Scholar
  60. Rozzi R, Sherriffs M (2003) El visón (Mustela vison Schreber, Carnivora: Mustelidae), un nuevo mamífero exótico para la isla Navarino. An Inst Patagon 31:97–104Google Scholar
  61. Rozzi R, Charlin R, Ippi S, Dollenz O (2004) Cabo de Hornos: Un Parque Nacional libre de especies exóticas en el confín de América. An Inst Patagon 32:55–62Google Scholar
  62. Rozzi R, Armesto JJ, Gutiérrez JR et al (2012) Integrating ecology and environmental ethics: earth stewardship in the southern end of the Americas. BioScience 62:226–236CrossRefGoogle Scholar
  63. Russ R (2007) History, exploration, settlement and past use of the sub-Antarctic. Pap Proc R Soc Tasmania 141:169–172CrossRefGoogle Scholar
  64. Sax DF, Gaines D (2008) Species invasions and extinction: the future of native biodiversity on islands. PNAS 105:11490–11497CrossRefPubMedGoogle Scholar
  65. Schüttler E, Cárcamo J, Rozzi R (2008) Diet of the American mink Mustela vison and its potential impact on the native fauna of Navarino Island, Cape Horn Biosphere Reserve, Chile. Rev Chil Hist Nat 81:599–613CrossRefGoogle Scholar
  66. Schüttler E, Klenke J, McGehee S, Rozzi R, Jax K (2009) Vulnerability of ground-nesting waterbirds to predation by invasive American mink in the Cape Horn Biosphere Reserve, Chile. Biol Conserv 142:1450–1460CrossRefGoogle Scholar
  67. Schüttler E, Saavedra-Aracena L, Jiménez JE (2018) Domestic carnivore interactions with wildlife in the Cape Horn Biosphere Reserve, Chile: husbandry and perceptions of impact from a community perspective. PeerJ 6:e4124CrossRefPubMedPubMedCentralGoogle Scholar
  68. Seebens H, Blackburn TM, Dyer EE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sernatur (2014) Plan de Acción Región de Magallanes y Antarctica Chilena Sector Turismo 2014–2018. Sernatur, Santiago de ChileGoogle Scholar
  70. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176CrossRefGoogle Scholar
  71. Sih A, Bolnick DI, Luttbeg B et al (2010) Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621CrossRefGoogle Scholar
  72. Simberloff D, Martin J-L, Genovesi P et al (2013) Impacts of biological invasions: what's what and the way forward. Trends Ecol Evol 28:58–66CrossRefPubMedGoogle Scholar
  73. Skewes O, González F, Olave R, Ávila A, Vargas V, Paulsen P, König HE (2006) Abundance and distribution of American beaver, Castor canadensis (Kuhl 1820), in Tierra del Fuego and Navarino islands, Chile. Eur J Wildl Res 52:292–296CrossRefGoogle Scholar
  74. Soto N, Cabello J (2007) Informe final: programa control de fauna dañina en la XIIa Región 2004–2007. SAG-FONDEMA, Servicio Agrícola y Ganadero, Magallanes y Antártica Chilena, Punta ArenasGoogle Scholar
  75. Suazo CG, Schlatter RP, Arriagada AM, Cabezas LA, Ojeda J (2013) Fishermen’s perceptions of interactions between seabirds and artisanal fisheries in the Chonos archipelago, Chilean Patagonia. Oryx 47:184–189CrossRefGoogle Scholar
  76. Tuhkanen S, Kuokka I, Hyvönen J, Stenroos S, Niemela J (1990) Tierra del Fuego as a target for biogeographical research in the past and present. An Inst Patagon 19:5–107Google Scholar
  77. UNESCO (2008) Madrid Action Plan for Biosphere Reserves (2008–2013) UNESCO, ParisGoogle Scholar
  78. Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83CrossRefGoogle Scholar
  79. Valenzuela AEJ, Anderson CB, Fasola L, Cabello JL (2014) Linking invasive exotic vertebrates and their ecosystem impacts in Tierra del Fuego to test theory and determine action. Acta Oecol 54:110–118CrossRefGoogle Scholar
  80. Valéry L, Hervé F, Lefeuvre J-C, Simberloff D (2008) In search of a real definition of the biological invasion phenomenon itself. Biol Invasions 10:1345–1351CrossRefGoogle Scholar
  81. van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography 39:542–552CrossRefGoogle Scholar
  82. Vanak AT, Gompper ME (2009) Dogs Canis familiaris as carnivores: their role and function in intraguild competition. Mammal Rev 39:265–283CrossRefGoogle Scholar
  83. Vergara G, Valenzuela J (2015) Presencia de visón americano (Neovison vison, Schreber 1777) en Chiloé, Chile: ¿Inicio de una invasión biológica? Ecosistemas 24:29–31CrossRefGoogle Scholar
  84. Villatoro FJ, Sepúlveda MA, Stowhas P, Silva-Rodríguez EA (2016) Urban dogs in rural areas: human-mediated movement defines dog populations in southern Chile. Prev Vet Med 135:59–66CrossRefPubMedGoogle Scholar
  85. Villatoro FJ, Naughton-Treves L, Sepúlveda MA, Stowhas P, Mardones FO, Silva-Rodríguez EA (2019) When free-ranging dogs threaten wildlife: public attitudes toward management strategies in southern Chile. J Environ Manage 229:67–75CrossRefPubMedGoogle Scholar
  86. Wanless RM, Angel A, Cutchbert RJ, Hilton GM, Ryan PG (2007) Can predation by invasive mice drive seabird extinctions? Biol Lett 3:241–244CrossRefPubMedPubMedCentralGoogle Scholar
  87. Williams TM (1986) Thermoregulation of the North American mink during rest and activity in the aquatic environment. Physiol Zool 59:293–305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sub-Antarctic Biocultural Conservation ProgramUniversidad de MagallanesPuerto WilliamsChile
  2. 2.Department of Ecological SciencesInstitute of Ecology and BiodiversitySantiagoChile
  3. 3.Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y TerritorioUniversidad Austral de ChileValdiviaChile
  4. 4.Department of Biological SciencesUniversity of North TexasDentonUSA
  5. 5.Department of Philosophy and ReligionUniversity of North TexasDentonUSA
  6. 6.Agriculture and Livestock ServiceChilean Ministry of AgriculturePunta ArenasChile

Personalised recommendations