Advertisement

Total photosynthetic biomass record between 9400 and 2200 BP and its link to temperature changes at a High Arctic site near Ny-Ålesund, Svalbard

  • Zhongkang Yang
  • Jianjun Wang
  • Linxi Yuan
  • Wenhan Cheng
  • Yuhong Wang
  • Zhouqing XieEmail author
  • Liguang SunEmail author
Original Paper
  • 43 Downloads

Abstract

Changes in vegetation biomass have a great impact on many aspects of the Arctic ecosystem, and historical variations of biomass in Svalbard during the Holocene remain poorly understood. In this study, we collected a palaeo-notch sediment profile in Ny-Ålesund, Svalbard, performed organic biomarker and geochemical analysis on the sediments, reconstructed the photosynthetic biomass record during the interval of 9400–2200 BP, and examined the relationship between the photosynthetic biomass changes and Holocene temperature records in the Arctic region. The photosynthetic biomass production in Ny-Ålesund experienced four development periods. It rose steadily at the beginning of the Holocene and became stabilized at a high level during the Holocene thermal maximum. However, the photosynthetic biomass dropped sharply during the mid-Holocene transition. After that, it showed a small peak during the interval of 3000–2500 BP. The historical photosynthetic biomass record is in good agreement with the temperature records: the photosynthetic biomass production increases during warmer periods, and vice versa. Therefore, temperature is likely the driving factor controlling the photosynthetic biomass production. This study improves our understanding of the terrestrial ecosystem and its responses to climate change in the Arctic.

Keywords

Holocene Phytol Bio-elements Photosynthetic biomass Svalbard 

Notes

Acknowledgements

The research was supported by Chinese Polar Environment Comprehensive Investigation & Assessment Programmes (CHINARE2017-02–01, CHINARE2017-04–04) and the External Cooperation Program of BIC, CAS (Project No.211134KYSB20130012). Samples provided by the Polar Sediment Repository of Polar Research Institute of China (PRIC). Samples Information and Data were issued by the Resource-sharing Platform of Polar Samples (https://birds.chinare.org.cn) maintained by Polar Research Institute of China (PRIC) and Chinese National Arctic & Antarctic Data Center (CN-NADC). We thank the Chinese Arctic and Antarctic Administration and PRIC for logistical support in field. We also thank the Governor of Svalbard for permission to carry out fieldwork.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

300_2019_2493_MOESM1_ESM.docx (337 kb)
Supplementary material 1 (DOC 337 kb)

References

  1. Alsos IG, Sjögren P, Edwards ME, Landvik JY, Gielly L, Forwick M, Coissac E, Brown AG, Jakobsen LV, Føreid MK (2016) Sedimentary ancient DNA from Lake Skartjørna, Svalbard: Assessing the resilience of arctic flora to Holocene climate change. Holocene 26:627–642CrossRefGoogle Scholar
  2. Andersen C, Koc N, Jennings A, Andrews J (2004) Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography.  https://doi.org/10.1029/2002PA000873 Google Scholar
  3. Bechtel A, Schubert CJ (2009) A biogeochemical study of sediments from the eutrophic Lake Lugano and the oligotrophic Lake Brienz, Switzerland. Org Geochem 40:1100–1114CrossRefGoogle Scholar
  4. Birks HH (1991) Holocene vegetational history and climatic change in west Spitsbergen—plant macrofossils from Skardtjørna, an Arctic lake. Holocene 1:209–218CrossRefGoogle Scholar
  5. Bond G, Showers W, Cheseby M, Lotti R, Almasi P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266CrossRefGoogle Scholar
  6. Boon PI, Virtue P, Nichols PD (1996) Microbial consortia in wetland sediments: a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Mar Freshw Res 47:27–41CrossRefGoogle Scholar
  7. Buchwal A, Rachlewicz G, Fonti P, Cherubini P, Gärtner H (2013) Temperature modulates intra-plant growth of Salix polaris from a high Arctic site (Svalbard). Polar Biol 36:1305–1318CrossRefGoogle Scholar
  8. Cheng W, Sun L, Kimpe LE, Mallory ML, Smol JP, Gallant LR, Li J, Blais JM (2016) Sterols and stanols preserved in pond sediments track seabird biovectors in a High Arctic environment. Environ Sci Technol 50:9351–9360CrossRefGoogle Scholar
  9. Chistyakova NO, Ivanova EV, Risebrobakken B, Ovsepyan EA, Ovsepyan YS (2010) Reconstruction of the postglacial environments in the southwestern Barents Sea based on foraminiferal assemblages. Oceanology 50:573–581CrossRefGoogle Scholar
  10. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627CrossRefGoogle Scholar
  11. Divine D, Isaksson E, Martma T, Meijer HAJ, Moore J, Pohjola V, van de Wal RSW, Godtliebsen F (2011) Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice-core data. Polar Res 30:7379CrossRefGoogle Scholar
  12. Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Adv Meteorol.  https://doi.org/10.1155/2011/893790 Google Scholar
  13. Forman SL, Mann DH, Miller GH (1987) Late Weichselian and Holocene relative sea-level history of Bröggerhalvöya, Spitsbergen. Quat Res 27:41–50CrossRefGoogle Scholar
  14. Forman S, Lubinski D, Ingólfsson Ó, Zeeberg J, Snyder J, Siegert M, Matishov G (2004) A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quat Sci Rev 23:1391–1434CrossRefGoogle Scholar
  15. Forman SL, Miller GH (1984) Time-dependent soil morphologies and pedogenic processes on raised beaches, Bröggerhalvöya, Spitsbergen, Svalbard Archipelago. Arct Alp Res 16:381–394CrossRefGoogle Scholar
  16. Hu QH, Sun LG, Xie ZQ, Emslie SD, Liu XD (2013) Increase in penguin populations during the Little Ice Age in the Ross Sea. Antarctica. Sci Rep 3:2472CrossRefGoogle Scholar
  17. Huang J, Sun L, Huang W, Wang X, Wang Y (2010) The ecosystem evolution of penguin colonies in the past 8,500 years on Vestfold Hills, East Antarctica. Polar Biol 33:1399–1406CrossRefGoogle Scholar
  18. Huang J, Sun L, Wang X, Wang Y, Huang T (2011) Ecosystem evolution of seal colony and the influencing factors in the 20th century on Fildes Peninsula, West Antarctica. J Environ Sci 23:1431–1436CrossRefGoogle Scholar
  19. Huybers P (2006) Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313:508–511CrossRefGoogle Scholar
  20. Isaksson E, Hermanson M, Hicks S, Igarashi M, Kamiyama K, Moore J, Motoyama H, Muir D, Pohjola V, Vaikmäe R, van de Wal RSW, Watanabe O (2003) Ice cores from Svalbard––useful archives of past climate and pollution history. Phys Chem Earth 28:1217–1228CrossRefGoogle Scholar
  21. Jessen SP, Rasmussen TL, Nielsen T, Solheim A (2010) A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000–0 cal years BP. Quat Sci Rev 29:1301–1312CrossRefGoogle Scholar
  22. Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML (2004) Holocene thermal maximum in the western Arctic (0–180 W). Quat Sci Rev 23:529–560CrossRefGoogle Scholar
  23. Kawamura K, Ishiwatari R (1981) Polyunsaturated fatty acids in a lacustrine sediment as a possible indicator of paleoclimate. Geochim Cosmochim Acta 45:149–155CrossRefGoogle Scholar
  24. Kristjánsdóttir GB, Moros M, Andrews JT, Jennings AE (2017) Holocene Mg/Ca, alkenones, and light stable isotope measurements on the outer North Iceland shelf (MD99-2269): a comparison with other multi-proxy data and sub-division of the Holocene. Holocene 27:52–62CrossRefGoogle Scholar
  25. Landvik JY, Bondevik S, Elverhøi A, Fjeldskaar W, Mangerud J, Salvigsen O, Siegert MJ, Svendsen J-I, Vorren TO (1998) The last glacial maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quat Sci Rev 17:43–75CrossRefGoogle Scholar
  26. Larsen DJ, Miller GH, Geirsdóttir Á, Ólafsdóttir S (2012) Non-linear Holocene climate evolution in the North Atlantic: a high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland. Quat Sci Rev 39:14–25CrossRefGoogle Scholar
  27. Lehman SJ, Forman SL (1992) Late Weichselian glacier retreat in Kongsfjorden, west Spitsbergen, Svalbard. Quat Res 37:139–154CrossRefGoogle Scholar
  28. Liu X, Sun L, Xie Z, Yin X, Wang Y (2005) A 1300-year record of penguin populations at Ardley Island in the Antarctic, as deduced from the geochemical data in the ornithogenic lake sediments. Arct Antarct Alp Res 37:490–498CrossRefGoogle Scholar
  29. Liu X, Zhao S, Sun L, Luo H, Yin X, Xie Z, Wang Y, Liu K, Wu X, Ding X (2006) Geochemical evidence for the variation of historical seabird population on Dongdao Island of the South China Sea. J Paleolimnol 36:259–279CrossRefGoogle Scholar
  30. Mangerud J, Bolstad M, Elgersma A, Helliksen D, Landvik JY, Lønne I, Lycke AK, Salvigsen O, Sandahl T, Svendsen JI (1992) The last glacial maximum on Spitsbergen, Svalbard. Quat Res 38:1–31CrossRefGoogle Scholar
  31. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  32. Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E (2012) Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat Sci Rev 47:1–14CrossRefGoogle Scholar
  33. Muraoka H, Noda H, Uchida M, Ohtsuka T, Koizumi H, Nakatsubo T (2008) Photosynthetic characteristics and biomass distribution of the dominant vascular plant species in a high Arctic tundra ecosystem, Ny-Ålesund, Svalbard: implications for their role in ecosystem carbon gain. J Plant Res 121:137CrossRefGoogle Scholar
  34. Nesbitt H, Young G (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717CrossRefGoogle Scholar
  35. Ogura K, Machihara T, Takada H (1990) Diagenesis of biomarkers in Biwa Lake sediments over 1 million years. Org Geochem 16:805–813CrossRefGoogle Scholar
  36. Olsen J, Anderson NJ, Knudsen MF (2012) Variability of the North Atlantic Oscillation over the past 5,200 years. Nat Geosci 5:808–812CrossRefGoogle Scholar
  37. Rasmussen TL, Thomsen E, Skirbekk K, Ślubowska-Woldengen M, Kristensen DK, Koç N (2014) Spatial and temporal distribution of Holocene temperature maxima in the northern Nordic seas: interplay of Atlantic-, Arctic- and polar water masses. Quat Sci Rev 92:280–291CrossRefGoogle Scholar
  38. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatte C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  39. Reusche M, Winsor K, Carlson AE, Marcott SA, Rood DH, Novak A, Roof S, Retelle M, Werner A, Caffee M (2014) 10 Be surface exposure ages on the late-Pleistocene and Holocene history of Linnébreen on Svalbard. Quat Sci Rev 89:5–12CrossRefGoogle Scholar
  40. Risebrobakken B, Moros M, Ivanova EV, Chistyakova N, Rosenberg R (2010) Climate and oceanographic variability in the SW Barents Sea during the Holocene. Holocene 20:609–621CrossRefGoogle Scholar
  41. Roland TP, Caseldine CJ, Charman DJ, Turney CSM, Amesbury MJ (2014) Was there a ‘4.2 ka event’ in Great Britain and Ireland? Evidence from the peatland record. Quat Sci Rev 83:11–27CrossRefGoogle Scholar
  42. Rontani JF, Volkman JK (2003) Phytol degradation products as biogeochemical tracers in aquatic environments. Org Geochem 34:1–35CrossRefGoogle Scholar
  43. Røthe TO, Bakke J, Vasskog K, Gjerde M, D'Andrea WJ, Bradley RS (2015) Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quat Sci Rev 109:111–125CrossRefGoogle Scholar
  44. Rozema J, Boelen P, Doorenbosch M, Bohncke S, Blokker P, Boekel C, Broekman R, Konert M (2006) A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard. Plant Ecol 182:155–173CrossRefGoogle Scholar
  45. Rozema J, Weijers S, Broekman R, Blokker P, Buizer B, Werleman C, El Yaqine H, Hoogedoorn H, Fuertes MM, Cooper E (2009) Annual growth of Cassiope tetragona as a proxy for Arctic climate: developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale. Glob Change Biol 15:1703–1715CrossRefGoogle Scholar
  46. Sun L, Xie Z, Zhao J (2000) A 3000-year record of penguin populations. Nature 407:858–858CrossRefGoogle Scholar
  47. Sun L, Liu X, Yin X, Zhu R, Xie Z, Wang Y (2004) A 1,500-year record of Antarctic seal populations in response to climate change. Polar Biol 27:495–501CrossRefGoogle Scholar
  48. Svendsen JI, Elverhmi A, Mangerud J (1996) The retreat of the Barents Sea Ice Sheet on the western Svalbard margin. Boreas 25:244–256CrossRefGoogle Scholar
  49. van der Bilt WGM, Bakke J, Vasskog K, D'Andrea WJ, Bradley RS, Ólafsdóttir S (2015) Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quat Sci Rev 126:201–218CrossRefGoogle Scholar
  50. van der Bilt WG, D'Andrea WJ, Bakke J, Balascio NL, Werner JP, Gjerde M, Bradley RS (2016) Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard. Quat Sci Rev 183:204–213CrossRefGoogle Scholar
  51. Van der Knaap W (1988) A pollen diagram from Brøggerhalvøya, Spitsbergen: changes in vegetation and environment from ca. 4400 to ca. 800 BP. Arct Alp Res 20:106–116CrossRefGoogle Scholar
  52. Van Der Wal R, Stien A (2014) High-arctic plants like it hot: a long-term investigation of between-year variability in plant biomass. Ecology 95:3414–3427CrossRefGoogle Scholar
  53. Walker DA, Raynolds MK, Daniëls FJ, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282CrossRefGoogle Scholar
  54. Wang J, Wang Y, Wang X, Sun L (2007) Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2,400 years. Polar Biol 30:1475–1481CrossRefGoogle Scholar
  55. Wang J, Sun L (2007) Molecular organic geochemistry of ornithogenic sediment from Svalbard, Arctic. Chin J Pol Sci 20:32–39Google Scholar
  56. Weijers S, Broekman R, Rozema J (2010) Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quat Sci Rev 29:3831–3842CrossRefGoogle Scholar
  57. Werner K, Spielhagen RF, Bauch D, Hass HC, Kandiano E (2013) Atlantic water advection versus sea–ice advances in the eastern Fram Strait during the last 9 ka: multiproxy evidence for a two-phase Holocene. Paleoceanography 28:283–295CrossRefGoogle Scholar
  58. Werner K, Müller J, Husum K, Spielhagen RF, Kandiano ES, Polyak L (2016) Holocene sea subsurface and surface water masses in the Fram Strait-Comparisons of temperature and sea–ice reconstructions. Quat Sci Rev 147:194–209CrossRefGoogle Scholar
  59. Xu L, Liu X, Sun L, Yan H, Liu Y, Luo Y, Huang J (2011) A 2200-year record of seabird population on Ganquan Island, South China Sea. Acta Geol Sin 85:957–967CrossRefGoogle Scholar
  60. Yang Z, Yuan L, Wang Y, Sun L (2017) Holocene climate change and anthropogenic activity records in Svalbard: a unique perspective based on Chinese research from Ny-Ålesund. Adv Polar Sci 28:81–90Google Scholar
  61. Yang Z, Sun L, Zhou X, Wang Y (2018a) Mid-to-late Holocene climate change record in palaeo-notch sediment from London Island. Svalbard. J Earth Syst Sci 127:57CrossRefGoogle Scholar
  62. Yang Z, Wang Y, Sun L (2018b) Records in palaeo-notch sediment: changes in palaeoproductivity and their link to climate change from Svalbard. Adv Polar Sci 29:243–253Google Scholar
  63. Yoon H, Khim B, Lee K, Park Y, Yoo K (2006) Reconstruction of postglacial paleoproductivity in Long Lake, King George Island, West Antarctica. Pol Polar Res 27:189–206Google Scholar
  64. Yuan L, Sun L, Long N, Xie Z, Wang Y, Liu X (2010) Seabirds colonized Ny-Ålesund, Svalbard, Arctic ~ 9400 years ago. Polar Biol 33:683–691CrossRefGoogle Scholar
  65. Yuan L, Sun L, Wei G, Long N, Xie Z, Wang Y (2011) 9400 yr BP: the mortality of mollusk shell (Mya truncata) at high Arctic is associated with a sudden cooling event. Environ Earth Sci 63:1385–1393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhongkang Yang
    • 1
  • Jianjun Wang
    • 2
  • Linxi Yuan
    • 3
  • Wenhan Cheng
    • 1
  • Yuhong Wang
    • 1
  • Zhouqing Xie
    • 1
    Email author
  • Liguang Sun
    • 1
    Email author
  1. 1.Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Key Laboratory of Global Change and Marine-Atmospheric ChemistryThird Institute of Oceanography, State Oceanic AdministrationXiamenChina
  3. 3.Advanced Lab for Selenium and Human Health, Suzhou Institute for Advanced StudyUniversity of Science and Technology of ChinaSuzhouChina

Personalised recommendations