Advertisement

Polar Biology

, Volume 42, Issue 2, pp 357–370 | Cite as

Sex- and developmental-specific transcriptomic analyses of the Antarctic mite, Alaskozetes antarcticus, reveal transcriptional shifts underlying oribatid mite reproduction

  • Hannah E. Meibers
  • Geoffrey Finch
  • Robert T. Gregg
  • Sierra Glenn
  • Keavash D. Assani
  • Emily C. Jennings
  • Benjamin Davies
  • Andrew J. Rosendale
  • Christopher J. Holmes
  • J. D. Gantz
  • Drew E. Spacht
  • Richard E. LeeJr.
  • David L. Denlinger
  • Matthew T. Weirauch
  • Joshua B. BenoitEmail author
Original Paper
  • 88 Downloads

Abstract

The oribatid mite Alaskozetes antarcticus, one of the most abundant terrestrial invertebrates in Antarctica, survives extreme temperature fluctuation and desiccation, and thrives in the short growing season characteristic of this polar environment. Several aspects of the mite’s ecology and physiology are well studied, but little is known about its reproduction. In this study, we utilize sex- and development-specific next-generation RNA-sequencing (RNA-seq) analyses to identify differentially regulated transcripts underlying reproduction of A. antarcticus. Pairwise comparisons between males, females, and tritonymphs revealed more than 4000 enriched transcripts based on different transcriptional levels among sexes and developmental stages. More than 500 of these enriched transcripts were differentially upregulated over 1000-fold. Many of the highly enriched and sex-specific transcripts were previously uncharacterized or have no known orthology. Of the transcripts identified, gene ontology-based analyses linked the transcriptional distinctions to differences in reproduction, chemosensation, and stress response. Our comparative approach allowed us to determine sexually dimorphic transcript expression in A. antarcticus. We anticipate that this study will provide a baseline to better understand the mechanisms that underlie reproduction in both polar and non-polar oribatid mites.

Keywords

RNA-seq Reproduction Testis-specific serine/threonine protein kinases Mite Antarctic reproductive biology 

Notes

Acknowledgements

This research was supported by the National Science Foundation (NSF PLR 1341385 and NSF PLR 1341393 with partial support for equipment in DEB-1654417) and the United States Department of Agriculture’s National Institute of Food and Agricultural Grant (2016-67012-24652). We are grateful for the hard work and assistance of the support staff at Palmer Station and the CCHMC Sequencing Core.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

300_2018_2427_MOESM1_ESM.xlsx (13 kb)
Online Resource 1. Primers used for PCR and qPCR analyses. Electronic supplementary material 1 (XLSX 13 kb)
300_2018_2427_MOESM2_ESM.xlsx (1 mb)
Online Resource 2. List of contigs with enriched expression in males at 20-fold expression compared to tritonymphs and females. Electronic supplementary material 6 (XLSX 1035 kb)
300_2018_2427_MOESM3_ESM.xlsx (47 kb)
Online Resource 3. List of contigs with enriched expression in females at 20-fold expression compared to tritonymphs and males. Electronic supplementary material 7 (XLSX 47 kb)
300_2018_2427_MOESM4_ESM.xlsx (67 kb)
Online Resource 4. List of contigs with enriched expression in tritonymphs at 20-fold expression compared to females and males. Electronic supplementary material 8 (XLSX 67 kb)
300_2018_2427_MOESM5_ESM.xlsx (64 kb)
Online Resource 5. Gene ontology analyses with Blast2GO for contigs enriched within the males compared to tritonymphs and females based on data from Online Resource 2. Electronic supplementary material 9 (XLSX 64 kb)
300_2018_2427_MOESM6_ESM.xlsx (13 kb)
Online Resource 6. Gene ontology analyses with Blast2GO for contigs enriched within females compared to tritonymphs and males based on data from Online Resource 3. Electronic supplementary material 10 (XLSX 13 kb)
300_2018_2427_MOESM7_ESM.xlsx (11 kb)
Online Resource 7. Gene ontology analyses with Blast2GO for contigs enriched within tritonymphs compared to males and females based on data from Online Resource 4. Electronic supplementary material 11 (XLSX 11 kb)
300_2018_2427_MOESM8_ESM.xlsx (18 kb)
Online Resource 8. Contigs matching transcription factors with two-fold higher expression in males compared to females and tritonymphs. Electronic supplementary material 12 (XLSX 18 kb)
300_2018_2427_MOESM9_ESM.xlsx (20 kb)
Online Resource 9. Contigs matching transcription factors with two-fold higher expression in females compared to males and tritonymphs. Electronic supplementary material 13 (XLSX 20 kb)
300_2018_2427_MOESM10_ESM.xlsx (45 kb)
Online Resource 10. Female-specific contigs identified by overlapping sex-specific RNA-seq analyses between the bulb mite Rhizoglyphus robini and the American dog tick, Dermacentor variabilis. Electronic supplementary material 2 (XLSX 45 kb)
300_2018_2427_MOESM11_ESM.xlsx (20 kb)
Online Resource 11. Male-specific contigs identified by overlapping sex-specific RNA-seq analyses between the bulb mite Rhizoglyphus robini and the American dog tick, Dermacentor variabilis. Electronic supplementary material 3 (XLSX 20 kb)
300_2018_2427_MOESM12_ESM.xlsx (225 kb)
Online Resource 12. Male-specific contigs identified by overlapping orthology analyses between Ixodes scapularis (Gulia-Nuss et al. 2016), Metaseiulus occidentalis (Hoy et al. 2016), Sarcoptes scabiei (Rider et al. 2015), Tetranychus urticae (Grbić et al. 2011), and Varroa destructor (Cornman et al. 2010). Electronic supplementary material 4 (XLSX 225 kb)
300_2018_2427_MOESM13_ESM.xlsx (16 kb)
Online Resource 13. Female-specific contigs identified by overlapping orthology analyses between Ixodes scapularis (Gulia-Nuss et al. 2016), Metaseiulus occidentalis (Hoy et al. 2016), Sarcoptes scabiei (Rider et al. 2015), Tetranychus urticae (Grbić et al. 2011), and Varroa destructor (Cornman et al. 2010). Electronic supplementary material 5 (XLSX 16 kb)

References

  1. Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF (2011) Insect seminal fluid proteins: identification and function. Ann Rev Entomol 56:21–40CrossRefGoogle Scholar
  2. Afgan E, Baker D, Van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res gkw343Google Scholar
  3. Ban N, Sasaki M, Sakai H, Ueda K, Inagaki N (2005) Cloning of ABCA17, a novel rodent sperm-specific ABC (ATP-binding cassette) transporter that regulates intracellular lipid metabolism. Biochem J 389:577–585CrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 57:289–300Google Scholar
  5. Benoit JB, Yoder JA, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2008) Adaptations for the maintenance of water balance by three species of Antarctic mites. Polar Biol 31:539–547CrossRefGoogle Scholar
  6. Benoit JB, Attardo GM, Michalkova V, Krause TB, Bohova J, Zhang Q, Baumann AA, Mireji PO, Takac P, Denlinger DL, Ribeiro JM, Aksoy S (2014) A novel highly divergent protein family identified from a viviparous insect by RNA-seq analysis: a potential target for tsetse fly-specific abortifacients. PLoS Genet 10:e1003874CrossRefGoogle Scholar
  7. Benoit JB, Adelman ZN, Reinhardt K, Dolan A, Poelchau M, Jennings EC, Szuter EM, Hagan RW, Gujar H, Shukla JN, Zhu F, Mohan M, Nelson DR, Rosendale AJ, Derst C, Resnik V, Wernig S, Menegazzi P, Wegener C, Peschel N, Hendershot JM, Blenau W, Predel R, Johnston PR, Ioannidis P, Waterhouse RM, Nauen R, Schorn C, Ott M-C, Maiwald F, Johnston JS, Gondhalekar AD, Scharf ME, Peterson BF, Raje KR, Hottel BA, Armisen D, Crumiere AJJ, Refki PN, Santos ME, Sghaier E, Viala S, Khila A, Ahn S-J, Childers C, Lee C-Y, Lin H, Hughes DST, Duncan EJ, Murali SC, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni H, Worley KC, Muzny DM, Wheeler D, Panfilio KA, Vargas Jentzsch IM, Vargo EL, Booth W, Friedrich M, Weirauch MT, Anderson MAE, Jones JW, Mittapalli O, Zhao C, Zhou J-J, Evans JD, Attardo GM, Robertson HM, Zdobnov EM, Ribeiro JMC, Gibbs RA, Werren JH, Pall SR, Schal C, Richards S (2016) Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat Commun 7:10165CrossRefGoogle Scholar
  8. Block W (1980) Survival strategies in polar terrestrial arthropods. Biol J Linn Soc 14:29–38CrossRefGoogle Scholar
  9. Block W, Convey P (1995) The biology, life cycle and ecophysiology of the Antarctic mite Alaskozetes antarcticus. J Zool 236:431–449CrossRefGoogle Scholar
  10. Brandt A, Schaefer I, Glanz J, Schwander T, Maraun M, Scheu S, Bast J (2017) Effective purifying selection in ancient asexual oribatid mites. Nat Commun 8:873CrossRefGoogle Scholar
  11. Breeuwer JAJ (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity 79:41–47CrossRefGoogle Scholar
  12. Bu C, Li J, Wang X-Q, Shi G, Peng B, Han J, Gao P, Wang Y (2015) Transcriptome analysis of the carmine spider mite, Tetranychus cinnabarinus (Boisduval, 1867) (Acari: Tetranychidae), and its response to β-Sitosterol. BioMed Res Int 2015:794718CrossRefGoogle Scholar
  13. Cabrera AR, Donohue KV, Roe RM (2009) Regulation of female reproduction in mites: a unifying model for the Acari. J Insect Physiol 55:1079–1090CrossRefGoogle Scholar
  14. Cabrera AR, Donohue KV, Khalil SM, Scholl E, Opperman C, Sonenshine DE, Roe RM (2011) New approach for the study of mite reproduction: The first transcriptome analysis of a mite, Phytoseiulus persimilis (Acari: Phytoseiidae). J Insect Physiol 57:52–61CrossRefGoogle Scholar
  15. Chan T-F, Ji K-M, Yim AK-Y, Liu X-Y, Zhou J-W, Li R-Q, Yang KY, Li J, Li M, Law PT-W (2015) The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol 135:539–548CrossRefGoogle Scholar
  16. Chauhan P, Wellenreuther M, Hansson B (2016) Transcriptome profiling in the damselfly Ischnura elegans identifies genes with sex-biased expression. BMC Genomics 17:985CrossRefGoogle Scholar
  17. Chown SL, Convey P (2016) Antarctic entomology. Ann Rev Entomol 61:119–137CrossRefGoogle Scholar
  18. Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp Appl Acarol 40:1–25CrossRefGoogle Scholar
  19. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefGoogle Scholar
  20. Convey P (1994a) Growth and survival strategy of the Antarctic mite Alaskozetes antarcticus. Ecography 17:97–107CrossRefGoogle Scholar
  21. Convey P (1994b) The influence of temperature on individual growth rates of the Antarctic mite Alaskozetes antarticus. Acta Oecol 15:43–53Google Scholar
  22. Convey P (1994c) Sex ratio, oviposition and early development of the Antarctic oribatid mite Alaskozetes antarcticus (Acaris: Cryptostigmata) with observations on other oribatids. Pedobiologia 38:161–168Google Scholar
  23. Convey P (1998) Latitudinal variation in allocation to reproduction by the Antarctic oribatid mite Alaskozetes antarcticus. Appl Soil Ecol 9:93–99CrossRefGoogle Scholar
  24. Convey P, Block W, Peat HJ (2003) Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Global Chang Biol 9:1718–1730CrossRefGoogle Scholar
  25. Cornman RS, Schatz MC, Johnston JS, Chen Y-P, Pettis J, Hunt G, Bourgeois L, Elsik C, Anderson D, Grozinger CM (2010) Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics 11:602CrossRefGoogle Scholar
  26. Everatt M, Convey P, Worland M, Bale J, Hayward S (2013) Heat tolerance and physiological plasticity in the Antarctic collembolan, Cryptopygus antarcticus, and mite, Alaskozetes antarcticus. J Thermal Biol 38:264–271CrossRefGoogle Scholar
  27. Findlay GD, Yi X, MacCoss MJ, Swanson WJ (2008) Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating. PLoS Biol 6:e178CrossRefGoogle Scholar
  28. Findlay GD, MacCoss MJ, Swanson WJ (2009) Proteomic discovery of previously unannotated, rapidly evolving seminal fluid genes in Drosophila. Genome Res 19:886–896CrossRefGoogle Scholar
  29. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152CrossRefGoogle Scholar
  30. Gao Z, Garbers DL (1998) Species diversity in the structure of zonadhesin, a sperm-specific membrane protein containing multiple cell adhesion molecule-like domains. J Biol Chem 273:3415–3421CrossRefGoogle Scholar
  31. Gibson AK, Smith Z, Fuqua C, Clay K, Colbourne JK (2013) Why so many unknown genes? Partitioning orphans from a representative transcriptome of the lone star tick Amblyomma americanum. BMC Genomics 14:135CrossRefGoogle Scholar
  32. Goddard DG (1977) Ecological studies on the terrestrial acari of Signy Island, South Orkney Islands, in the maritime Antarctic. Dissertation, College of Medicine, Biological Sciences and PsychologyGoogle Scholar
  33. Goddard DG (1980) Biological observations on the free-living mites of Signy Island in the maritime Antarctic. Br Antarct Surv Bull 49:73–80Google Scholar
  34. Goddard DG (1982) Feeding biology of free-living acari at Signy Island, South Orkney Islands. Br Antarct Surv Bull 51:290–293Google Scholar
  35. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefGoogle Scholar
  36. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479CrossRefGoogle Scholar
  37. Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ, Dermauw W, Ngoc PCT, Ortego F (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492CrossRefGoogle Scholar
  38. Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, Sattelle DB, De La Fuente J, Ribeiro JMC, Megy K et al (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun 7:10507CrossRefGoogle Scholar
  39. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512CrossRefGoogle Scholar
  40. He M-L, Xu J, He R, Shen N-X, Gu X-B, Peng X-R, Yang G-Y (2016) Preliminary analysis of Psoroptes ovis transcriptome in different developmental stages. Parasit Vect 9:570CrossRefGoogle Scholar
  41. Higgins CF (1992) ABC transporters: from microorganisms to man. Ann Rev Cell Biol 8:67–113CrossRefGoogle Scholar
  42. Hoy MA, Waterhouse RM, Wu K, Estep AS, Ioannidis P, Palmer WJ, Pomerantz AF, Simão FA, Thomas J, Jiggins FM (2016) Genome sequencing of the phytoseiid predatory mite Metaseiulus occidentalis reveals completely atomized Hox genes and superdynamic intron evolution. Genome Biol Evol 8:1762–1775CrossRefGoogle Scholar
  43. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682CrossRefGoogle Scholar
  44. Huang da W, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  45. Huang da W, Sherman BT, Zheng X, Yang J, Imamichi T, Stephens R, Lempicki RA (2009b) Extracting biological meaning from large gene lists with DAVID. Current Protocols in Bioinformatics Chapter 13Google Scholar
  46. Joag R, Stuglik M, Konczal M, Plesnar-Bielak A, Skrzynecka A, Babik W, Radwan J (2016) Transcriptomics of intralocus sexual conflict: gene expression patterns in females change in response to selection on a male secondary sexual trait in the bulb mite. Genome Biol Evol 8:2351–2357CrossRefGoogle Scholar
  47. Koutsos AC, Blass C, Meister S, Schmidt S, MacCallum RM, Soares MB, Collins FH, Benes V, Zdobnov E, Kafatos FC (2007) Life cycle transcriptome of the malaria mosquito Anopheles gambiae and comparison with the fruitfly Drosophila melanogaster. Proc Natl Acad Sci USA 104:11304–11309CrossRefGoogle Scholar
  48. Leader DP, Krause SA, Pandit A, Davies SA, Dow JA (2017) FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic Acids Res gkx976Google Scholar
  49. Li H-H, Kong L-F, Yu R, Yu H, Li Q (2016) Characterization, expression, and functional analysis of testis-specific serine/threonine kinase 1 (Tssk1) in the pen shell Atrina pectinata. Invert Reprod Dev 60:118–125CrossRefGoogle Scholar
  50. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550CrossRefGoogle Scholar
  51. Maraun M, Heethoff M, Scheu S, Norton RA, Weigmann G, Thomas RH (2003) Radiation in sexual and parthenogenetic oribatid mites (Oribatida, Acari) as indicated by genetic divergence of closely related species. Exp Appl Acarol 29:265–277CrossRefGoogle Scholar
  52. McReynolds S, Dzieciatkowska M, Stevens J, Hansen KC, Schoolcraft WB, Katz-Jaffe MG (2014) Toward the identification of a subset of unexplained infertility: a sperm proteomic approach. Fertil Steril 102:692–699CrossRefGoogle Scholar
  53. Michaud MR, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL (2008) Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J Insect Physiol 54:645–655CrossRefGoogle Scholar
  54. Mikhaylova LM, Nguyen K, Nurminsky DI (2008) Analysis of the Drosophila melanogaster testes transcriptome reveals coordinate regulation of paralogous genes. Genetics 179:305–315CrossRefGoogle Scholar
  55. Mother-Wagner U, Seitz K-A (1984) Ultrahistory of oogenesis and vitellogenesis in the spider mite, Tetranychus urticae. Tissue Cell 16:179–194CrossRefGoogle Scholar
  56. Norton RA (1994) Evolutionary aspects of oribatid mite life histories and consequences for the origin of the astigmata. In: Houck M.A. (eds) Mites. Springer, Boston, MAGoogle Scholar
  57. Papa F, Windbichler N, Waterhouse RM, Cagnetti A, D'Amato R, Persampieri T, Lawniczak MK, Nolan T, Papathanos PA (2017) Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes. Genome Res 27:1536–1548CrossRefGoogle Scholar
  58. Park J, Stanley D, Kim Y (2014) Roles of peroxinectin in PGE2-mediated cellular immunity in Spodoptera exigua. PLoS ONE 9:e105717CrossRefGoogle Scholar
  59. Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061–1067CrossRefGoogle Scholar
  60. Pearse JS, McClintock JB, Bosch I (1991) Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. Am Zool 31:65–80CrossRefGoogle Scholar
  61. Petrella V, Aceto S, Musacchia F, Colonna V, Robinson M, Benes V, Cicotti G, Bongiorno G, Gradoni L, Volf P (2015) De novo assembly and sex-specific transcriptome profiling in the sand fly Phlebotomus perniciosus (Diptera, Phlebotominae), a major Old World vector of Leishmania infantum. BMC Genomics 16:847CrossRefGoogle Scholar
  62. Pfingstl T (2013) Habitat use, feeding and reproductive traits of rocky-shore intertidal mites from Bermuda (Oribatida: Fortuyniidae and Selenoribatidae). Acarologia 53:369–382CrossRefGoogle Scholar
  63. Pound JM, Oliver JH Jr (1976) Reproductive morphology and spermatogenesis in Dermanyssus gallinae (DeGeer) (Acari: Dermanyssidae). J Morph 150:825–842CrossRefGoogle Scholar
  64. Reimand J, Arak T, Adler P, Kolberg L, Reisberg S Peterson H Vilo J (2016) g: profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res gkw199Google Scholar
  65. Reinhardt K, Wong CH, Georgiou AS (2009) Detection of seminal fluid proteins in the bed bug, Cimex lectularius, using two-dimensional gel electrophoresis and mass spectrometry. Parasit 136:283–292CrossRefGoogle Scholar
  66. Rider SD, Morgan MS, Arlian LG (2015) Draft genome of the scabies mite. Parasit Vect 8:585CrossRefGoogle Scholar
  67. Roe RM, Donohue KV, Khalil S, Sonenshine DE (2008) Hormonal regulation of metamorphosis and reproduction in ticks. Front Biosci 13:7250–7268CrossRefGoogle Scholar
  68. Rosendale AJ, Romick-Rosendale LE, Watanabe M, Dunlevy ME, Benoit JB (2016) Mechanistic underpinnings of dehydration stress in ticks revealed through RNA-seq and metabolomics. J Exp Biol 219:1808–1819CrossRefGoogle Scholar
  69. Salz HK (2011) Sex determination in insects: a binary decision based on alternative splicing. Curr Opin Gen Dev 21:395–400CrossRefGoogle Scholar
  70. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CrossRefGoogle Scholar
  71. Schoville SD, Chen YH, Andersson MNN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen M-JM, Childers AK et al (2018) A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep 8:1931CrossRefGoogle Scholar
  72. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092CrossRefGoogle Scholar
  73. Scolari F, Gomulski LM, Ribeiro JMC, Siciliano P, Meraldi A, Falchetto M, Bonomi A, Manni M, Gabrieli P, Malovini A (2012) Transcriptional profiles of mating-responsive genes from testes and male accessory glands of the Mediterranean fruit fly Ceratitis capitata . PLoS ONE 7:e46812CrossRefGoogle Scholar
  74. Scolari F, Benoit JB, Michalkova V, Aksoy E, Takac P, Abd-Alla AM, Malacrida AR, Aksoy S, Attardo GM (2016) The spermatophore in Glossina morsitans morsitans: insights into male contributions to reproduction. Sci Rep 6:20334CrossRefGoogle Scholar
  75. Seixas A, Alzugaray MF, Tirloni L, Parizi LF, Pinto AFM, Githaka NWo, Konnai S, Ohashi K, Yates III JR, Termignoni C (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick-Borne Dis 9:72–81Google Scholar
  76. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212CrossRefGoogle Scholar
  77. Sonenshine DE, Bissinger BW, Egekwu N, Donohue KV, Khalil SM, Roe RM (2011) First transcriptome of the testis-vas deferens-male accessory gland and proteome of the spermatophore from Dermacentor variabilis (Acari: Ixodidae). PLoS ONE 6:e24711CrossRefGoogle Scholar
  78. Spiridonov NA, Wong L, Zerfas PM, Starost MF, Pack SD, Paweletz CP, Johnson GR (2005) Identification and characterization of SSTK, a serine/threonine protein kinase essential for male fertility. Mol Cell Biol 25:4250–4261CrossRefGoogle Scholar
  79. Strong J (1967) Ecology of terrestrial arthropods at Palmer station, Antarctic Peninsula. Entomol Antarct 357–371Google Scholar
  80. Stuglik MT, Babik W, Prokop Z, Radwan J (2014) Alternative reproductive tactics and sex-biased gene expression: the study of the bulb mite transcriptome. Ecol Evol 4:623–632CrossRefGoogle Scholar
  81. Søvik G (2002) The biology and life history of arctic populations of the littoral mite Ameronothrus lineatus (Acari, Oribatida). Exp Appl Acarol 34:3–20CrossRefGoogle Scholar
  82. Søvik G, Leinaas H (2003a) Adult survival and reproduction in an arctic mite, Ameronothrus lineatus (Acari, Oribatida): effects of temperature and winter cold. Can J Zool 81:1579–1588CrossRefGoogle Scholar
  83. Søvik G, Leinaas H (2003b) Long life cycle and high adult survival in an arctic population of the mite Ameronothrus lineatus (Acari, Oribatida) from Svalbard. Polar Biol 26:500–508CrossRefGoogle Scholar
  84. Takemori N, Yamamoto MT (2009) Proteome mapping of the Drosophila melanogaster male reproductive system. Proteom 9:2484–2493CrossRefGoogle Scholar
  85. Tardif S, Wilson MD, Wagner R, Hunt P, Gertsenstein M, Nagy A, Lobe C, Koop BF, Hardy DM (2010) Zonadhesin is essential for species specificity of sperm adhesion to the egg zona pellucida. J Biol Chem 285:24863–24870CrossRefGoogle Scholar
  86. Teets NM, Kawarasaki Y, Lee RE Jr, Denlinger DL (2013) Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica. J Comp Physiol B 183:189–201CrossRefGoogle Scholar
  87. Tootle TL, Spradling AC (2008) Drosophila Pxt: a cyclooxygenase-like facilitator of follicle maturation. Development 135:839–847CrossRefGoogle Scholar
  88. Tootle TL, Williams D, Hubb A, Frederick R, Spradling A (2011) Drosophila eggshell production: identification of new genes and coordination by Pxt. PLoS ONE 6:e19943CrossRefGoogle Scholar
  89. Urbanski JM, Benoit JB, Michaud MR, Denlinger DL, Armbruster P (2010) The molecular physiology of increased egg desiccation resistance during diapause in the invasive mosquito, Aedes albopictus. Proc Biol Sci 277:2683–2692CrossRefGoogle Scholar
  90. Walzl MG (1992) Ultrastructure of the reproductive system of the house dust mites Dermatophagoides farinae and D. pteronyssinus (Acari, Pyroglyphidae) with remarks on spermatogenesis and oogenesis. Exp Appl Acarol 16:85–116CrossRefGoogle Scholar
  91. Weeks AR, Breeuwer JAJ (2001) Wolbachia–induced parthenogenesis in a genus of phytophagous mites. Proc R Soc Lond B 268:2245–2251CrossRefGoogle Scholar
  92. Weiss BL, Kaufman WR (2001) The relationship between ‘critical weight’and 20-hydroxyecdysone in the female ixodid tick, Amblyomma hebraeum. J Insect Physiol 47:1261–1267CrossRefGoogle Scholar
  93. Weiss BL, Kaufman WR (2004) Two feeding-induced proteins from the male gonad trigger engorgement of the female tick Amblyomma hebraeum. Proc Natl Acad Sci USA 101:5874–5879CrossRefGoogle Scholar
  94. Xia Q, Cheng D, Duan J, Wang G, Cheng T, Zha X, Liu C, Zhao P, Dai F, Zhang Z (2007) Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm Bombyx mori. Genome Biol 8:R162CrossRefGoogle Scholar
  95. Xu B, Hao Z, Jha KN, Zhang Z, Urekar C, Digilio L, Pulido S, Strauss JF, Flickinger CJ, Herr JC (2008a) Targeted deletion of Tssk1 and 2 causes male infertility due to haploinsufficiency. Dev Biol 319:211–222CrossRefGoogle Scholar
  96. Xu B, Hao Z, Jha KN, Zhang Z, Urekar C, Digilio L, Pulido S, Strauss JF, Flickinger CJ, Herr JC (2008b) TSKS concentrates in spermatid centrioles during flagellogenesis. Dev Biol 319:201–210CrossRefGoogle Scholar
  97. Young S, Block W (1980) Experimental studies on the cold tolerance of Alaskozetes antarcticus. J Insect Physiol 26:189–200CrossRefGoogle Scholar
  98. Zmudczyńska-Skarbek K, Zwolicki A, Convey P, Barcikowski M, Stempniewicz L (2015) Is ornithogenic fertilization important for collembolan communities in Arctic terrestrial ecosystems? Polar Res 34:25629CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hannah E. Meibers
    • 1
  • Geoffrey Finch
    • 1
  • Robert T. Gregg
    • 1
  • Sierra Glenn
    • 1
  • Keavash D. Assani
    • 1
  • Emily C. Jennings
    • 1
  • Benjamin Davies
    • 1
  • Andrew J. Rosendale
    • 1
  • Christopher J. Holmes
    • 1
  • J. D. Gantz
    • 2
  • Drew E. Spacht
    • 3
  • Richard E. LeeJr.
    • 2
  • David L. Denlinger
    • 3
  • Matthew T. Weirauch
    • 4
    • 5
  • Joshua B. Benoit
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of BiologyMiami UniversityOxfordUSA
  3. 3.Departments of Entomology and Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusUSA
  4. 4.Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  5. 5.Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations