Advertisement

Polar Biology

, Volume 42, Issue 2, pp 285–305 | Cite as

Horizontal and vertical distribution of polycystine radiolarians in the western Arctic Ocean during the late summers of 2013 and 2015

  • Takahito IkenoueEmail author
  • Kjell R. Bjørklund
  • Amane Fujiwara
  • Mario Uchimiya
  • Katsunori Kimoto
  • Naomi Harada
  • Shigeto Nishino
Original Paper

Abstract

A drastic sea-ice reduction has been observed in the Pacific sector of the Arctic Ocean during the last few decades. However, it is still poorly understood how the future reduction in sea-ice cover will impact the microzooplankton communities within the Arctic marine ecosystems. To elucidate the relationship between hydrographic conditions and the horizontal and vertical distribution of polycystine radiolarians, we analyzed 84 plankton tow samples from 51 stations in the western Arctic Ocean. Radiolarians were commonly observed in the continental slope area and the deeper basin area but were scarce or absent on the continental shelf area during the late summers of 2013 and 2015. The horizontal distribution of radiolarians during this time interval was primarily related to the horizontal distribution of low salinity waters. Radiolarian abundances increased at the stations where the seasonally mixed layer, which was formed by sea-ice melt and river runoff, was observed. This result suggests that freshwater inputs would affect the distribution of radiolarians in the western Arctic, presumably via the modification of their food sources. Vertical distribution of radiolarian species was controlled by temperature and salinity characteristics of each water mass, but their abundance decreased in water masses with low dissolved oxygen.

Keywords

Radiolaria Arctic Ocean Sea-ice meltwater River runoff Fresh water 

Notes

Acknowledgements

We are grateful to the captain, officers, and crews of the R.V. Mirai. We are thankful to Drs. Giuseppe Cortese (Department of Paleontology GNS Science - Te Pu Ao. Lower Hutt, New Zealand), Alexander Matul (P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia), and Demetrio Boltovskoy (Universidad de Buenos Aires, Buenos Aires, Argentina) for their critical reviews with many helpful comments and suggestions. We also thank Dr. Takuto Minami (Earthquake Research Institute, The University of Tokyo) for his support in creating diagrams using the Generic mapping tools (GMT). We also acknowledge O. R. Anderson (Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA) for reading an early version of this manuscript, his comments, and for proofing our English. This study was supported by the Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science (JSPS) 15H05712 to N.H., 26740006 to T.I., 17K00539 to T.I., and the Arctic Challenge for Sustainability (ArCS) project funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interests exist.

Supplementary material

300_2018_2421_MOESM1_ESM.pdf (19 kb)
Supplementary material 1 (PDF 19 kb)
300_2018_2421_MOESM2_ESM.pdf (70 kb)
Supplementary material 2 (PDF 70 kb)
300_2018_2421_MOESM3_ESM.pdf (70 kb)
Supplementary material 3 (PDF 69 kb)
300_2018_2421_MOESM4_ESM.pdf (235 kb)
Supplementary material 4 (PDF 234 kb)
300_2018_2421_MOESM5_ESM.pdf (677 kb)
Supplementary material 5 (PDF 676 kb)
300_2018_2421_MOESM6_ESM.xlsx (20 kb)
Supplementary material 6 (XLSX 19 kb)
300_2018_2421_MOESM7_ESM.xlsx (30 kb)
Supplementary material 7 (XLSX 29 kb)
300_2018_2421_MOESM8_ESM.pdf (69 kb)
Supplementary material 8 (PDF 68 kb)

References

  1. Amon RM, Meon B (2004) The biogeochemistry of dissolved organic matter and nutrients in two large Arctic estuaries and potential implications for our understanding of the Arctic Ocean system. Mar Chem 92:311–330CrossRefGoogle Scholar
  2. Anderson OR (1983) Radiolaria. Springer, New York, p 365CrossRefGoogle Scholar
  3. Anderson LG (2002) DOC in the Arctic Ocean. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 665–683CrossRefGoogle Scholar
  4. Bailey JW (1856) Notice of microscopic forms found in the soundings of the Sea of Kamtschatka. Am J Sci Arts 22:1–6Google Scholar
  5. Bernhard JM (1988) Postmortem vital staining in benthic Foraminifera: duration and importance in population and distributional studies. J Foraminifer Res 18:143–146CrossRefGoogle Scholar
  6. Bernstein T (1934) Zooplankton des Nordlischen teiles des Karischen Meeres. Trans Arct Inst 9:3–58 (in Russian with German summary) Google Scholar
  7. Bjørklund KR, Kruglikova SB (2003) Polycystine radiolarians in surface sediments in the Arctic Ocean basins and marginal seas. Mar Micropaleontol 49:231–273CrossRefGoogle Scholar
  8. Bjørklund KR, Cortese G, Swanberg N et al (1998) Radiolarian faunal provinces in surface sediments of the Greenland, Iceland and Norwegian (GIN) seas. Mar Micropaleontol 35:105–140CrossRefGoogle Scholar
  9. Bjørklund KR, Itaki T, Dolven JK (2014) Per Theodor Cleve: a short résumé and his radiolarian results from the Swedish Expedition to Spitsbergen in 1898. J Micropalaeontol 33:59–93CrossRefGoogle Scholar
  10. Blueford JR (1983) Distribution of Quaternary radiolaria in the Navarin Basin geologic province, Bering Sea. Deep-Sea Res Pt A 30:763–781CrossRefGoogle Scholar
  11. Boltovskoy E, Lena HA (1970) On the decomposition of the protoplasm and the sinking velocity of the planktonic foraminifers. Int Rev Gesamt Hydrobiol Hydrogr 55:797–804CrossRefGoogle Scholar
  12. Boltovskoy D, Kogan M, Alder VA et al (2003) First record of a brackish radiolarian (Polycystina): Lophophaena rioplatensis n. sp. in the Rio de la Plata estuary. J Plankton Res 25:1551–1559CrossRefGoogle Scholar
  13. Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 40:51–57CrossRefGoogle Scholar
  14. Carmack E, Wassmann P (2006) Food webs and physical-biological coupling on pan-Arctic shelves: unifying concept and comprehensive perspectives. Prog Oceanogr 71:446–477CrossRefGoogle Scholar
  15. Cleve PT (1899) Plankton collected by the Swedish Expedition to Spitzbergen in 1898. Kgl Svenska Vetensk Akad Hand 32:1–51Google Scholar
  16. Coachman LK, Barnes CA (1961) The contribution of Bering Sea water to the Arctic Ocean. Arctic 14:147–161CrossRefGoogle Scholar
  17. Coachman LK, Aagaard K, Tripp RB (1975) Bering Strait: the regional physical oceanography. University of Washington Press, Seattle, p 172Google Scholar
  18. Comiso JC (2012) Large decadal decline of the Arctic multiyear ice cover. J Clim 25:1176–1193CrossRefGoogle Scholar
  19. Comiso JC, Parkinson CL, Gersten R et al (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703CrossRefGoogle Scholar
  20. Cortese G, Bjørklund KR (1997) The morphometric variation of Actinomma boreale (Radiolaria) in Atlantic boreal waters. Mar Micropaleontol 29:271–282CrossRefGoogle Scholar
  21. Cortese G, Bjørklund KR (1998) The taxonomy of boreal Atlantic Ocean. Actinommida (Radiolaria). Micropaleontology 44:149–160CrossRefGoogle Scholar
  22. Cortese G, Bjørklund KR, Dolven JK (2003) Polycystine radiolarians in the Greenland– Iceland-Norwegian seas: species and assemblage distribution. Sarsia 88:65–88CrossRefGoogle Scholar
  23. Dolan JR, Yang EJ, Kim TW et al (2015) Microzooplankton in a warming Arctic: a comparison of tintinnids and radiolarians from summer 2011 and 2012 in the Chukchi Sea. Acta Protozoologica 53:101–113Google Scholar
  24. Dolven JK, Bjørklund KR, Itaki T (2014) Jørgensen’s polycystine radiolarian slide collection and new species. J Micropalaeontol 33:21–58CrossRefGoogle Scholar
  25. Ehrenberg CG (1838) Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen, Abhandlungen, Jahre 1838. K Preuss Akad Wiss, Berlin, pp 59–147Google Scholar
  26. Ehrenberg CG (1847) Über eine halibiolithische, von Herm R. Scnomburk entdeckte, vorherrschend aus microskopischen Polycystinen gebildete, Gebirgamasse von Barbados, Monatsberichte, Jahre 1846, K Preuss Akad Wiss, Berlin, 382–385Google Scholar
  27. Ehrenberg CG (1862) Über die Tiefgrund-Verhältnisse des Oceans am Eingange der Davisstrasse und bei Island, Monatsberichte, Jahre 1861. K Preuss Akad Wiss, Berlin, pp 275–315Google Scholar
  28. Ehrenberg CG (1873) Mikrogeologischen Studien über das kleinste Leben der Meeres-Tiefgrunde aller Zonen und dessen geologischen Einfluss, Abhandlungen, Jahre 1873. K Preuss Akad Wiss, Berlin, pp 131–399Google Scholar
  29. Ehrenberg CG (1875) Fortsetzung der mikrogeologischen Studien als Gesammt-Uebersicht der mikroskopischen Palaontologie gleichartig analysirter Gebirgsarten der Erde, mit specieller Rucksicht auf den Polycystinen-Mergel von Barbados, Abhandlungen, Jahre 1875. K Preuss Akad Wiss, Berlin, pp 1–225Google Scholar
  30. Fujiwara A, Hirawake T, Suzuki K et al (2014) Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean. Biogeosciences 11:1705–1716CrossRefGoogle Scholar
  31. Grebmeier JM (2012) Shifting patterns of life in the Pacific Arctic and subarctic seas. Ann Rev Mar Sci 4:63–78CrossRefGoogle Scholar
  32. Grebmeier JM, Moore SE, Overland JE et al (2010) Biological response to recent Pacific Arctic sea ice retreats. Eos 91:161–162CrossRefGoogle Scholar
  33. Haeckel E (1862) Die Radiolarien (Rhizopoda Radiaria)—Eine Monographie. Reimer, Berlin, p 572CrossRefGoogle Scholar
  34. Haeckel E (1881) Prodromus Systematis Radiolarium,Entwurf eines Radiolarien-Systems auf Grund von Studien der Challenger-Radiolarien. Jenaische Zeitschrift für Naturwissenschaft 15:418–472Google Scholar
  35. Haeckel E (1887) Report on the Radiolaria collected by the H.M.S. Challenger during the years 1873–1876. Rep Sci Results Voyag HMS Chall 18:1–1803Google Scholar
  36. Hertwig R (1879) Der organismus der Radiolarien. Jenaische Denkshr 2:129–277Google Scholar
  37. Hülseman K (1963) Radiolaria in plankton from the Arctic drifting station T-3, including the description of three new species. Arc Inst North Am Tech Pap 13:1–52Google Scholar
  38. Ikenoue T, Takahashi K, Tanaka S (2012a) Fifteen year time-series of radiolarian fluxes and environmental conditions in the Bering Sea and the central subarctic Pacific, 1990–2005. Deep Sea Res Part II 61–64:17–49CrossRefGoogle Scholar
  39. Ikenoue T, Ueno H, Takahashi K (2012b) Rhizoplegma boreale (Radiolaria): a tracer for mesoscale eddies from coastal areas. J Geophys Res 117:C04001.  https://doi.org/10.1029/2011JC007728 CrossRefGoogle Scholar
  40. Ikenoue T, Bjørklund KR, Kruglikova SB et al (2015) Flux variations and vertical distributions of siliceous Rhizaria (Radiolaria and Phaeodaria) in the western Arctic Ocean: indices of environmental changes. Biogeosciences 12:2019–2046.  https://doi.org/10.5194/bg-12-2019-2015 CrossRefGoogle Scholar
  41. Ikenoue T, Bjørklund KR, Dumitrica P et al (2016) Two new living Entactinaria (Radiolaria) species from the Arctic province: Joergensenium arcticum n. sp. and Joergensenium clevei n. sp. Mar Micropaleontol 124:75–94CrossRefGoogle Scholar
  42. Itaki T, Ito M, Narita H, Ahagon M et al (2003) Depth distribution of radiolarians from the Chukchi and Beaufort Seas, western Arctic. Deep Sea Res Part I 50:1507–1522CrossRefGoogle Scholar
  43. Jackson JM, Allen SE, McLaughlin FA et al (2011) Changes to the near surface waters in the Canada Basin, Arctic Ocean from 1993 to 2009: a basin in transition. J Geophys Res 116:C10008.  https://doi.org/10.1029/2011JC007069 CrossRefGoogle Scholar
  44. Japan Meteorological Agency (2018) Sea ice in the Arctic and Antarctic areas. https://www.data.jma.go.jp/gmd/kaiyou/english/seaice_global/series_global_e.html Accessed 20 Sept 2018
  45. Jørgensen E (1900) Protophyten und Protozöen im Plankton aus der norwegischen Westküste. Bergens Museumus Aarbog 1899 6:51–112Google Scholar
  46. Jørgensen E (1905) The Protist plankton and the diatoms in bottom samples, plates VIII–XVIII. Bergens Museuns Skrifter 1:49–151Google Scholar
  47. Kozur H, Möstler H (1982) Entactinaria subordo Nov., a new radiolarian suborder. Geologisch Paläontologische Mitteilungen, Innsbruck 11:399–414Google Scholar
  48. Kruglikova SB, Bjørklund KR, Hammer Ø et al (2009) Endemism and speciation in the polycystine radiolarian genus Actinomma in the Arctic Ocean: description of two new species Actinomma georgiin. sp., and A. turidaen. sp. Mar Micropaleontol 72:26–48CrossRefGoogle Scholar
  49. Kruglikova SB, Bjørklund KR, Dolven JK et al (2010) High-rank polycystine radiolarian taxa as tempera- ture proxies in the Nordic Seas. Stratigraphy 7:265–281Google Scholar
  50. Li WK, McLaughlin FA, Lovejoy C et al (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539CrossRefGoogle Scholar
  51. Ling HY, Stadum CJ, Welch ML (1971) Polycystine radiolaria from Bering Sea surface sediments. In: Farinacci, A. (ed) Proceedings of the Second Planktonic Conference, Roma, 1970, Tecnoscienza, pp 705–729Google Scholar
  52. Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114:C12024CrossRefGoogle Scholar
  53. McLaughlin FA, Carmack E, Proshutinsky A et al (2011) The rapid response of the Canada Basin to climate forcing: from bellwether to alarm bells. Oceanography 24:146–159.  https://doi.org/10.5670/oceanog.2011.66 CrossRefGoogle Scholar
  54. Motoda S (1959) Devices of simple plankton apparatus. Mem Fac Fish Hokkaido Univ 7:73–94Google Scholar
  55. Müller J (1858) Über die Thalassicollen, Polycystinen und Acanthometren des Mittelmeeres, Abhandlungen, Jahre 1858. K Preuss Akad Wiss, Berlin, pp 1–62Google Scholar
  56. Niemi A, Meisterhans G, Michel C (2014) Response of under-ice prokaryotes to experimental sea-ice DOM enrichment. Aquat Microb Ecol 73:17–28.  https://doi.org/10.3354/ame01706 CrossRefGoogle Scholar
  57. Nishino S (2013) R/V Mirai cruise report MR13-06, 226 pp. www.godac.jamstec.go.jp/darwin/datatree/e. Accessed 30 Mar 2018, JAMSTEC, Yokosuka, Japan
  58. Nishino S (2015) R/V Mirai cruise report MR15-03, 297 pp, www.godac.jamstec.go.jp/darwin/datatree/e. Accessed 30 Mar 2018, JAMSTEC, Yokosuka, Japan, 2015
  59. Nishino S, Kikuchi T, Yamamoto-Kawai M et al (2011) Enhancement/reduction of biological pump depends on ocean circulation in the sea-ice reduction regions of the Arctic Ocean. J Oceanogr 67:305–314CrossRefGoogle Scholar
  60. Petrushevskaya MG (1971) Radiolyarii Nassellaria v planktone Mirovogo Okeana, Issledovaniya Fauny Morei, 9, 1–294, (C App., 374–397), Nauka, Leningrad (in Russian)Google Scholar
  61. Popofsky A (1908) Die Radiolarien der Antarktis (mit Ausnahme der Tripyleen). In: Drygalski E (ed) Deutsche Südpolar-Expedition 1901–1903, X, Zoologie, 2, part 3. Georg Reimer, Berlin, pp 184–305Google Scholar
  62. Proshutinsky A, Krishfield R, Timmermans ML et al (2009) Beaufort Gyre freshwater reservoir: state and variability from observations. J Geophys Res 114:CooA10Google Scholar
  63. Riedel WR (1967) Subclass radiolaria. In: Harland WB, Palaeontological Association (eds) The Fossil Record. Geol Soc London, London, pp 291–298Google Scholar
  64. Sergeeva VM, Sukhanova IN, Flint MV et al (2010) Phytoplankton community in the western Arctic in July–August 2003. Oceanology 50:184–197CrossRefGoogle Scholar
  65. Sherr EB, Sherr BF (2002) Significant of predation by protists in aquatic microbial food webs. Antonie Van Leewenhoek. Int J Gen Mol Microbiol 81:293–308Google Scholar
  66. Sherr EB, Sherr BF, Fessenden L (1997) Heterotrophic protists in the central Arctic Ocean. Deep Sea Res Part II 44:1665–1682CrossRefGoogle Scholar
  67. Shimada K, Carmack EC, Hatakeyama K et al (2001) Varieties of shallow temperature maximum waters in the western Canadian Basin of the Arctic Ocean. Geophys Res Lett 28:3441–3444CrossRefGoogle Scholar
  68. Shimada K, Kamoshida T, Itoh M et al (2006) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett 33:L08605.  https://doi.org/10.1029/2005GL025624 Google Scholar
  69. Steele M, Ermold W, Zhang J (2008) Arctic ocean surface warming trends over the past 100 years. Geophys Res Lett 35:L02614.  https://doi.org/10.1029/2007GL031651 CrossRefGoogle Scholar
  70. Stroeve J, Holland MM, Meier W et al (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501CrossRefGoogle Scholar
  71. Stroeve JC, Serreze MC, Holland MM et al (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110:1005–1027.  https://doi.org/10.1007/s10584-011-0101-1 CrossRefGoogle Scholar
  72. Sukhanova IN, Flint MV, Pautova LA et al (2009) Phytoplankton of the western Arctic in the spring and summer of 2002: structure and seasonal changes. Deep-Sea Res II 56:1223–1236CrossRefGoogle Scholar
  73. Swanberg NR, Bjørklund KR (1986) The radiolarian fauna of western Norwegian fjords: patterns of abundance in the plankton. Mar Micropaleontol 11:231–241CrossRefGoogle Scholar
  74. Swanberg NR, Bjørklund KR (1987) Radiolaria in the plankton of some fjords in western and northern Norway: the distribution of species. Sarsia 72:231–244CrossRefGoogle Scholar
  75. Swanberg NR, Eide LK (1992) The radiolarian fauna at the ice edge in the Greenland Sea during summer, 1988. J Mar Res 50:297–320CrossRefGoogle Scholar
  76. Tibbs JF (1967) On some planktonic Protozoa taken from the track of Drift Station Arlis I, 1960–1961. J Arct Inst N Am 20:247–254Google Scholar
  77. Timmermans ML, Proshutinsky A, Golubeva E et al (2014) Mechanisms of Pacific Summer Water variability in the Arctic’s Central Canada Basin. J Geophys Res 119:7523–7548.  https://doi.org/10.1002/2014JC010273 CrossRefGoogle Scholar
  78. Uchimiya M, Fukuda H, Nishino S et al (2011) Does freshening of surface water enhance heterotrophic prokaryote production in the western Arctic? Empirical evidence from the Canada Basin during September 2009. J Oceanogr 67:589–599CrossRefGoogle Scholar
  79. Udintsev GB, Boichenko IG, Kanaev VR (1964) Bottom relief of the Bering Sea. In: P L Bezrukov (ed.), Geographical Description of the Bering Sea. Israel Program for Scientific Translations, Jerusalem; US Dept Commerce; Natl Sci Found, Washington, DC, pp 14– 64Google Scholar
  80. Wassmann P, Reigstad M (2011) Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanogr 24:220–231CrossRefGoogle Scholar
  81. Wassmann P, Duarte CM, Agustí S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Change Biol 17:1235–1249CrossRefGoogle Scholar
  82. Watanabe E (2011) Beaufort shelf break eddies and shelf-basin exchange of Pacific summer water in the western Arctic Ocean detected by satellite and mooring analyses. J Geophys Res 116:C08034.  https://doi.org/10.1029/2010JC006259 Google Scholar
  83. Welschmeyer N (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992CrossRefGoogle Scholar
  84. Yamamoto-Kawai M, Tanaka N, Pivovarov S (2005) Freshwater and brine behaviors in the Arctic Ocean deduced from historical data of δ18O and alkalinity (1929–2002 AD). J Geophys Res 110:C10003CrossRefGoogle Scholar
  85. Yamamoto-Kawai M, McLaughlin FA, Carmack EC et al (2008) Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, 18O, and nutrients. J Geophys Res 113:C01007CrossRefGoogle Scholar
  86. Yamamoto-Kawai M, McLaughlin FA, Carmack EC et al (2009a) Surface freshening of the Canada Basin, 2003–2007: river runoff versus sea ice meltwater. J Geophys Res 114:05.  https://doi.org/10.1029/2008JC005000 CrossRefGoogle Scholar
  87. Yamamoto-Kawai M, McLaughlin FA, Carmack EC et al (2009b) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:1098–1100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Central LaboratoryMarine Ecology Research Institute (MERI)ChibaJapan
  2. 2.Natural History Museum, Department of GeologyUniversity of OsloOsloNorway
  3. 3.Institute of Arctic Climate and Environment ResearchJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  4. 4.RIKEN Center for Sustainable Resource ScienceYokohamaJapan
  5. 5.Department of Marine SciencesUniversity of GeorgiaAthensUSA
  6. 6.Research and Development Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations