Polar Biology

, Volume 42, Issue 1, pp 47–64 | Cite as

Diversity of mycelial fungi in natural and human-affected Antarctic soils

  • G. A. KochkinaEmail author
  • N. E. Ivanushkina
  • A. V. Lupachev
  • I. P. Starodumova
  • O. V. Vasilenko
  • S. M. Ozerskaya
Original Paper


Environmental disturbance is an unpreventable consequence of human impact after exploration and research station management in Antarctica. Environmental pollution may directly influence Antarctic mycobiota. However, information about the effect of anthropogenic factors on microscopic fungi at extremely low temperatures is insufficient. This work compared the abundance and the species diversity of mycelial fungi from soils of six Russian research Antarctic stations—Bellingshausen, Progress-2, Druzhnaya-4, Molodezhnaya, Novolazarevskaya and Oasis−affected by various anthropogenic impacts (operation of tracked and wheeled vehicles, storage and use of petroleum products and petroleum leakage sites) with that from their background analogues. New data were obtained on the taxonomic diversity of mycelial fungi from Antarctic soils with different anthropogenic loads. Cultural, morphological and physiological studies of 142 isolated strains of mycelial fungi were supplemented by molecular–biological research into sterile mycelium strains and those with vague morphological characters. This contributed not only to the verification but also to a significant increase in the number of taxa of mycelial fungi isolated from low-temperature ecotopes. Leotiomycetes and Dothideomycetes were found to be the most dominant classes in the studied samples. It was shown that several ecological groups of micromycetes could be isolated among the mycobiota of the investigated habitats, the abundance and species composition of which changed differently under the influence of anthropogenic factors. The current results highlight that microbiota changes in human-affected soils can serve as an indicator of the state of low-temperature ecotopes in general.


Antarctica Mycelial fungi Biodiversity Anthropogenic impact 



This work was supported by the Russian Foundation for Basic Research, projects no. 15-29-02629-ofi_m and no. 16-04-01050-a. We thank the editor Dieter Piepenburg and the reviewers for the excellent contributions in improving the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arefyev SP (2000) Mycoindication of the forest ecosystems state in Yamal. In: Arefyev SP, Gashev SN, Sharapova TA, Fattakhov RG, Stepanova VB (eds) Environmental nature of Yamal, 3rd edn. Institute of Northern Development, Siberian Division of the Russian Academy of Sciences, Tyumen, pp 96–116 (in Russian) Google Scholar
  2. Arenz BE, Blanchette RA, Farrell RL (2014) Fungal diversity in Antarctic soils. In: Cowan D (ed) Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer, Berlin, pp 35–53.
  3. Ban YH, Tang M, Chen H, Xu ZY, Zhang HH, Yang YR (2012) The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS ONE. 7:e47968. CrossRefGoogle Scholar
  4. Barnet HL, Hunter BB (1972) Illustrated genera of imperfect fungi, 3rd edn. Burgess, MinneapolisGoogle Scholar
  5. Bayazitova AA, Glushko NI, Lisovskaya SA, Khaldeeva EV, Parshakov VR, Ilyinskaya ON (2015) Effect of heavy metals on the sensitivity of clinical strains of Aspergillus niger to antimycotics. Adv Med Mycol (Moscow) 14:331–333 (in Russian) Google Scholar
  6. Bissett J (1984) A revision on the genus Trichoderma. Can J Bot 62:924–931. CrossRefGoogle Scholar
  7. Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC (2004) Phoma identification manual: differentiation of specific and infra-specific taxa in culture. CABI, WallingfordCrossRefGoogle Scholar
  8. Bovio E, Gnavi G, Prigione V, Spina F, Denaro R, Yakimov M, Calogero R, Crisafi F, Varese GC (2017) The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318. CrossRefGoogle Scholar
  9. Camacho A, Rochera C, Hennebelle R, Ferrari C, Quesada A (2015) Total mercury and methyl-mercury contents and accumulation in polar microbial mats. Sci Total Environ 509–510:145–153. CrossRefGoogle Scholar
  10. Carmichael JW, Kendrick WB, Conners IL, Sigler L (1980) Genera of hyphomycetes. University of Alberta Press, CanadaGoogle Scholar
  11. Cox F, Newsham KK, Bol R, Dungait JAJ, Robinson C (2016) Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol Lett 19:528–536. CrossRefGoogle Scholar
  12. Crous PW, Braun U, Schubert K, Groenewald JZ (2007) The genus Cladosporium and similar dematiaceous Hyphomycetes. Stud Mycol 58:1–253CrossRefGoogle Scholar
  13. Crous PW, Diederich P (2010) Fusicladium peltigericola Crous & Diederich, sp. nov. Persoonia (Fungal Planet) 25:128–129Google Scholar
  14. de Hoog GS (1977) Rhinocladiella and allied genera. Stud Mycol 15:1–140Google Scholar
  15. de Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76Google Scholar
  16. de Hoog GS, Zeng JS, Harrak MJ, Sutton DA (2006) Exophiala xenobiotica sp. nov., an opportunistic black yeast inhabiting environments rich in hydrocarbons. Antonie Leeuwenhoek 90:257–268. CrossRefGoogle Scholar
  17. Ding Z, Li L, Che Q, Li D, Gu Q, Zhu T (2016) Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica. Extremophiles 20:425–435. CrossRefGoogle Scholar
  18. Domsch KH, Gams W, Anderson T-H (2007) Compendium of soil fungi. IHW, EchingGoogle Scholar
  19. Ellis MB (1971) Dematiaceous hyphomycetes. Commonwealth Mycological Institute, KewGoogle Scholar
  20. Evdokimova G, Masloboev V, Mozgova N, Myazin V, Fokina N (2012) Bioremediation of oil-polluted cultivated soils in the Euro-Arctic Region. J Environ Sci Eng A1:1130–1136Google Scholar
  21. Fernandez PM, Martorell MM, Blaser MG, Ruberto LAM, de Figueroa LIC, MacCormack WP (2017) Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 21:445–457. CrossRefGoogle Scholar
  22. Gams W (2000) Phialophora and some similar morphologically little differentiated anamorphs of divergent ascomycetes. Stud Mycol 45:187–199Google Scholar
  23. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. CrossRefGoogle Scholar
  24. Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Halle B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age and implication for astrobiology. Astrobiology 2:275–311. CrossRefGoogle Scholar
  25. Gostinčar C, Ohm R, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potentials, stress tolerance, and description of new species. BMC Genomics 15:1–28. Google Scholar
  26. de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102:1066–1081. CrossRefGoogle Scholar
  27. Hermanides-Nijhof EJ (1977) Aureobasidium and allied genera. Stud Mycol 15:141–177Google Scholar
  28. Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldu FX, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. CrossRefGoogle Scholar
  29. Kartal SN, Katsumata N, Imamura Y (2006) Removal of copper, chromium, and arsenic from CCA-treated wood by organic acids released by mold and staining fungi. Forest Prod J 56:33–37Google Scholar
  30. Kirtsideli IYu, Abakumov EV, Teshebaev ShB, Zelenskaya MS, Vlasov DYu, Krylenkov VA, Ryabusheva YuV, Sokolov VT, Barantsevich EP (2016) Microbial communities in regions of Arctic settlements. Hyg & Sanit (Russian Journal) 95:923–929 (in Russian) Google Scholar
  31. Kittl R, Mueangtoom K, Gonaus C, Khazaneh ST, Sygmund C, Haltrich D, Ludwig R (2012) A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. J Biotechnol 157:304–314. CrossRefGoogle Scholar
  32. Klich MA (2002) Identification of common Aspergillus species. Centraalbur voor Schimmelcult, UtrechtGoogle Scholar
  33. Kochkina GA, Ivanushkina NE, Akimov VN, Gilichinskii DA, Ozerskaya SM (2007) Halo- and psychrotolerant Geomyces fungi from Arctic cryopegs and marine deposits. Microbiology (Moscow) 76:31–38. CrossRefGoogle Scholar
  34. Kochkina GA, Ivanushkina NE, Karasev SG, Gavrish EY, Gurina LV, Evtushenko LI, Spirina EV, Vorob’eva EA, Gilichinskii DA, Ozerskaya SM (2001) Survival of micromycetes and actinobacteria under conditions of longterm natural cryopreservation. Microbiology (Moscow) 70:356–364. CrossRefGoogle Scholar
  35. Kochkina G, Ivanushkina N, Ozerskaya S, Chigineva N, Vasilenko O, Firsov S, Spirina E, Gilichinsky D (2012) Ancient fungi in Antarctic permafrost environments. FEMS Microbiol Ecol 82:501–509. CrossRefGoogle Scholar
  36. Kochkina GA, Ozerskaya SM, Ivanushkina NE, Chigineva NI, Vasilenko OV, Spirina EV, Gilichinskii DA (2014) Fungal diversity in the Antarctic active layer. Microbiology (Moscow) 83:94–101. CrossRefGoogle Scholar
  37. Korneikova MV, Evdokimova GA, Lebedeva EV (2011) The complexes of microscopic fungi in cultivated soils polluted by oil products on the north of Kola peninsula. Mykol Phytopatol 45:249–256 (in Russian) Google Scholar
  38. Kosolapov DA (2009) The structure of the biota of aphyllophoroid fungi in the preserve “Belyi” (Komi Republic). Vestnik of the Institute of Biology, Komi scientific center, Ural branch of the Russian Academy of Sciences 11:2–4 (in Russian) Google Scholar
  39. Leelaruji W, Piamtongkam R, Chulalaksananukul S, Chulalaksananukul W (2013) Biodiesel production from Jatropha curcas oil catalysed by whole cells of Aureobasidium pullulans var. melanogenum SRY 14–3. Afr J Biotechnol 12:4380–4386. CrossRefGoogle Scholar
  40. Leitao AN (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417. CrossRefGoogle Scholar
  41. Lugauskas A, Mikulskienė A, Šliaužienė D (1987) Catalogue of the fungi deteriorating polymeric materials. Nauka, Moscow (in Russian)Google Scholar
  42. Makhalanyane TP, Van Goethem MW, Cowan DA (2016) Microbial diversity and functional capacity in polar soils. Curr Opin Biotechnol 38:159–166. CrossRefGoogle Scholar
  43. Moghimi H, Heidarytabar R Hamedi J (2016) Evaluation of crude oil biodegradation by Phaeosphaeria sp. UTMC 5003. Iran J Med Microbiol 9(4):63–72Google Scholar
  44. Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Change 6:182–186. CrossRefGoogle Scholar
  45. Onofri S, Selbmann L, Zucconi L, Tosi S, Fenice M, Barreca D, Ruisi S (2005) Studies on Antarctic fungi. Polarnet Tech Rep 1:49–52Google Scholar
  46. Panin AL, Sboychakov VB, Belov AB, Kraeva LA, Vlasov DYu, Goncharov AE (2016) Natural and technogenic focality of infectious diseases in the territory of Antarctic settlements. Biol Bull Rev 6:320–332. CrossRefGoogle Scholar
  47. Pitt JI (1979) The Genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic, LondonGoogle Scholar
  48. Samson RA (1974) Paecilomyces and some allied hyphomycetes. Stud Mycol 6:1–119Google Scholar
  49. Samson RA, Frisvad JC (2004) Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites. Stud Mycol 49:1–251Google Scholar
  50. Samson RA, Houbraken J (2011) Phylogenetic and taxonomic studies on the genera Penicillium and Talaromyces. Stud Mycol 70:1–183CrossRefGoogle Scholar
  51. Schol-Schwarz MB (1970) Revision of the genus Phialophora (Moniliales). Persoonia 6:59–94Google Scholar
  52. Schubert K, Ritschel A, Braun U (2003) A monograph of Fusicladium (Hyphomycetes). Schlechtendalia 9:1–132Google Scholar
  53. Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. CBS KNAW Biodiversity Center, UtrechtGoogle Scholar
  54. Semenov SM (1990) Laboratory media for actinomycetes and fungi. Manual, Agropromizdat, Moscow (in Russian)Google Scholar
  55. Shchelchkova MV, Struchkova LK (2010) Parameters of microorganisms numerosity in diagnostics of cryosolic black earth pollution by heavy metals. Izvestia of Samara scientific center of the Russian Academy of Sciences 12:1090–1092 (in Russian) Google Scholar
  56. Shigapov AM (2016) Bioremediation of oil-contaminated soils with organic components of forestry waste (on the example of sod-podzolic soils of the Urals Federal District of Russia). Dissertation, Ural State University of Railway Transport, Ekaterinburg (in Russian)Google Scholar
  57. Slemmons C, Johnson G, Connel LB (2013) Application of an automated ribosomal intergenic spacer analysis database for identification of cultured Antarctic fungi. Antarct Sci 25:44–50. CrossRefGoogle Scholar
  58. Sogonov MV, Schroers H-J, Gams W (2005) The hyphomycete Teberdinia hygrophila gen. nov. sp. nov. and related anamorphs of Pseudeurotium species. Mycologia 97:695–709. CrossRefGoogle Scholar
  59. Staniec B, Pietrykowska-Tudruj E, Czepiel-Mil K (2016) Larva of Gyrophaena boleti (Linnaeus, 1758) (Coleoptera: Staphylinidae) – an obligatory saproxylic and mycophagous species associated with Fomitopsis pinicola: notes on tergal gland system and behaviour. Ann Zool 66:83–100. CrossRefGoogle Scholar
  60. Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434. CrossRefGoogle Scholar
  61. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefGoogle Scholar
  62. van Dorst J, Benaud N,Ferrari, B (2017) New insights into the microbial diversity of polar desert soils: a biotechnological perspective. In: Chénard C, Lauro FM (eds) Microbial ecology of extreme environments. Ch. 7. Springer, Berlin, pp 169–183.
  63. van Oorschot CAN (1980) A revision of Chrysosporium and allied genera. Stud Mycol 20:1–89Google Scholar
  64. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246. CrossRefGoogle Scholar
  65. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322Google Scholar
  66. Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad JC, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757. CrossRefGoogle Scholar
  67. Zvyagintsev DG, Kurakov AV, Umarov MM, Philip Z (1997) Microbiological and biochemical indicators of lead pollution in soddy-podzolic soil. Eurasian Soil Sci (Moscow) 30:1003–1009Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.All-Russian Collection of Microorganisms (VKM), G. K. Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia
  2. 2.Institute of Physicochemical and Biological Problems in Soil ScienceRussian Academy of SciencesPushchinoRussia

Personalised recommendations