Polar Biology

, Volume 41, Issue 4, pp 629–642 | Cite as

An integrative taxonomic approach confirms the valid status of Bombus glacialis, an endemic bumblebee species of the High Arctic

  • G. S. Potapov
  • A. V. Kondakov
  • V. M. Spitsyn
  • B. Yu. Filippov
  • Yu. S. Kolosova
  • N. A. Zubrii
  • I. N. Bolotov
Article

Abstract

The evolutionary biogeography of the Arctic Ocean islands is a relatively little-known topic. The Novaya Zemlya Archipelago, a severe mountain land of glaciers, rocks, Arctic deserts and tundra, is among the most enigmatic places in the world because it was a closed area for more than half a century. Here, we report the results of an integrative study of Bombus glacialis Friese, 1902, which has been described from the archipelago. We found that this island lineage has a high level of mtDNA COI gene divergence and a unique nucleotide substitution in the nDNA EF-1α gene but is a sister taxon of B. lapponicus and B. sylvicola. A redescription of the species using Friese’s syntype and newly collected topotypes from Novaya Zemlya is presented. Our results confirm the species status of B. glacialis from Novaya Zemlya, although its relationships with morphologically similar lineages inhabiting other High Arctic areas (Kolguev Island, Kanin Peninsula and Wrangel Island) should be determined in the future. Overall, new findings highlight that the Arctic Ocean archipelagos could preserve cold-tolerant Quaternary relict lineages of invertebrates, which currently may be on the brink of extinction due to climate warming.

Keywords

Bumblebees Cryptic lineage Island biogeography High Arctic Pleistocene glaciations 

Notes

Acknowledgements

This study was supported by the Russian Ministry of Education and Science (Project No. 6.2343.2017), the President of Russia Grant Council (Project No. MD-7660.2016.5), the Russian Foundation for Basic Research, RFBR (Project Nos. 16-34-60035 mol_a_dk and 16-05-00854) and Young Scientists of Pomorye 2017 (No. 04-2017-03a). The collection of the topotypes was performed during the ‘Floating University’ scientific expedition of the Northern (Arctic) Federal University. We are indebted to Dr. Prof. J. Kjærandsen and Dr. R. Bergersen (Norway) for providing us with the opportunity to the study collections of the Tromsø Museum. Additionally, we are grateful to the staff of the Natural History Museum (London), the Zoological Institute of Russian Academy of Sciences (Saint Petersburg) and the Zoological Museum of Moscow University for the opportunity to examine their collections. Special thanks go to S.A. Rybalkin (Russia) for material from Chukotka. Special thanks go to Dr. Prof. J. Kjærandsen for photographs of the type specimen of B. glacialis. We are also thankful to Dr. E. Yu. Churakova (Russia) for identification of the plant species. Special thanks are due to Dr. M. Copley for improving the language of the paper. We are also grateful to three anonymous reviewers for their valuable comments on the earlier version of the manuscript.

Supplementary material

300_2017_2224_MOESM1_ESM.docx (140 kb)
Supplementary material 1 (DOCX 139 kb)

References

  1. Berezin MV (1990) Ecology and nesting of bumblebees on Wrangel Island. Proc Colloq of All-Union Entomol Soc Section for the Study of Social Insects, 1st Colloquium. Leningrad, pp 19–28Google Scholar
  2. Berezin MV (1995a) Geographical diversity, species correlation, population structure and cenotic interactions of Arctic bumble bees (Apidae, Bombus). Biodivers Ecol Var Invertebr Microorg 3:205–215Google Scholar
  3. Berezin MV (1995b) Bumblebees in Arctic ecosystems. Ecosystems of the North, structure, adaptations, stability. In: Proc Rus conference, Moscow, pp 43–57Google Scholar
  4. Bolotov IN (2012) The fauna and ecology of butterflies (Lepidoptera, Rhopalocera) of the Kanin Peninsula and Kolguev Island. Entomol Rev 92(3):296–304.  https://doi.org/10.1134/S0013873812030062 CrossRefGoogle Scholar
  5. Bolotov IN, Tatarinov AG, Filippov BY, Gofarov MY, Kondakov AV, Kulakova OI, Potapov GS, Zubryi NA, Spitsyn VM (2015) The distribution and biology of Pararctia subnebulosa (Dyar, 1899) (Lepidoptera: Erebidae: Arctiinae), the largest tiger moth species in the High Arctic. Polar Biol 38(6):905–911.  https://doi.org/10.1007/s00300-014-1643-2 CrossRefGoogle Scholar
  6. Bolotov IN, Aksenova OV, Bespalaya YV, Gofarov MY, Kondakov AV, Paltser IS, Stefansson A, Travina OV, Vinarski MV (2017) Origin of a divergent mtDNA lineage of a freshwater snail species, Radix balthica, in Iceland: cryptic glacial refugia or a postglacial founder event? Hydrobiology 787(1):73–98.  https://doi.org/10.1007/s10750-016-2946-9 CrossRefGoogle Scholar
  7. Brochmann C, Gabrielsen TM, Nordal I, Landvik JY, Elven R (2003) Glacial survival or tabula rasa? The history of North Atlantic biota revisited. Taxon 52(3):417–450CrossRefGoogle Scholar
  8. Coulson SJ, Convey P, Aakra K, Aarvik L, Ávila-Jiménez ML, Babenko A, Biersma E, Boström S, Brittain JE, Carlsson A, Christoffersen KS, De Smet WH, Ekrem T, Fjellberg A, Füreder L, Gustafsson D, Gwiazdowicz DJ, Hansen LO, Hullé M, Kaczmarek L, Kolicka M, Kuklin V, Lakka H-K, Lebedeva N, Makarova O, Maraldo K, Melekhina E, Ødegaard F, Pilskog HE, Simon JC, Sohlenius B, Solhøy T, Søli G, Stur E, Tanasevitch A, Taskaeva A, Velle G, Zawierucha K, Zmudczyńska-Skarbek K (2014) The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol Biochem 68:440–470.  https://doi.org/10.1016/j.soilbio.2013.10.006 CrossRefGoogle Scholar
  9. Denk T, Grímsson F, Zetter R (2010) Episodic migration of oaks to Iceland: Evidence for a North Atlantic “land bridge” in the latest Miocene. Am J Bot 97(2):276–287PubMedCrossRefGoogle Scholar
  10. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214.  https://doi.org/10.1186/1471-2148-7-214 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5):699–710.  https://doi.org/10.1371/journal.pbio.0040088 CrossRefGoogle Scholar
  12. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973.  https://doi.org/10.1093/molbev/mss075 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  14. Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive glacial cycles. Proc Natl Acad Sci USA 111(15):5634–5639.  https://doi.org/10.1073/pnas.1321437111 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Friese H (1902) Die arktischen Hymenopteren, mit Ausschluss der Tenthrediniden. Fauna Arct 2:439–498Google Scholar
  16. Friese H (1905) Neue oder wenig bekannte Hummeln des Russischen Reiches (Hymenoptera). Annuaire Mus Zool Acad Imp Sci St-Pétersbourg 9:507–523Google Scholar
  17. Friese H (1908) Ueber die Bienen (Apidae) der Russischen Polarexpedition 1900–1903 und einigen anderen Arktischen Ausbeuten. Mem Acad Imp Sci St.-Pétersbourg. VIII Série. Classe Physico-mathématique 18(13):1–19Google Scholar
  18. Gjershaug JO, Staverløkk A, Kleven O, Ødegaard F (2013) Species status of Bombus monticola Smith (Hymenoptera: Apidae) supported by DNA barcoding. Zootaxa 3716(3):431–440.  https://doi.org/10.11646/zootaxa.3716.3.6 PubMedCrossRefGoogle Scholar
  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. Han MV, Zmasek CM (2009) PhyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinform 10(1):356.  https://doi.org/10.1186/1471-2105-10-356 CrossRefGoogle Scholar
  21. Hines HM (2008) Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst Biol 57(1):58–75PubMedCrossRefGoogle Scholar
  22. Hines HM, Cameron SA, Williams PH (2006) Molecular phylogeny of the bumblebee subgenus Pyrobombus (Hymenoptera: Apidae: Bombus) with insights into gene utility for lower level analysis. Invertebr Syst 20:289–303CrossRefGoogle Scholar
  23. Høeg O (1924) Pollen on humble-bees from Novaya Zemlya 1921. Rep Sci Results Norw Exped Novaya Zemlya 27:3–18Google Scholar
  24. Hofmann S (2012) Population genetic structure and geographic differentiation in the hot spring snake Thermophis baileyi (Serpentes, Colubridae): indications for glacial refuges in southern-central Tibet. Mol Phylogenet Evol 63(2):396–406.  https://doi.org/10.1016/j.ympev.2012.01.014 PubMedCrossRefGoogle Scholar
  25. Hofmann S, Kraus S, Dorge T, Nothnagel M, Fritzsche P, Miehe G (2014) Effects of Pleistocene climatic fluctuations on the phylogeography, demography and population structure of a high-elevation snake species, Thermophis baileyi, on the Tibetan Plateau. J Biogeogr 41(11):2162–2172.  https://doi.org/10.1111/jbi.12358 CrossRefGoogle Scholar
  26. Hughes AL, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45(1):1–45.  https://doi.org/10.1111/bor.12142 CrossRefGoogle Scholar
  27. Ivanova EV, Murdmaa IO, Emelyanov EM, Seitkalieva EA, Radionova EP, Alekhina GN, Sloistov SM (2016) Postglacial paleoceanographic environments in the Barents and Baltic seas. Oceanol 56(1):118–130.  https://doi.org/10.1134/S0001437016010057 CrossRefGoogle Scholar
  28. Jacobson GG (1898) Zoological investigation on Novaya Zemlya in 1896. The insects of Novaya Zemlya. Mem Acad Imp Sci St Pétersbourg 8(1):171–244Google Scholar
  29. Kolosova YS, Potapov GS (2011) Bumblebees (Hymenoptera, Apidae) in the forest-tundra and tundra of Northeast Europe. Entomol Rev 91(7):830–836.  https://doi.org/10.1134/S0013873811070049 CrossRefGoogle Scholar
  30. Kolosova YS, Potapov GS, Skyutte NG, Bolotov IN (2016) Bumblebees (Hymenoptera, Apidae, Bombus Latr.) of the thermal spring Pymvashor, north-east of European Russia. Entomol Fennica 27(4):190–196Google Scholar
  31. Kristjánsson BK, Svavarsson J (2007) Subglacial refugia in Iceland enabled groundwater amphipods to survive glaciations. Am Nat 170(2):292–296PubMedCrossRefGoogle Scholar
  32. Kupianskaya AN (1995) Family Apidae. In: Lelej AS, Kupianskaya AN, Kurzenko NV, Nemkov PG (eds) Key to the insects of Russian Far East. Neuropteroidea, Mecoptera, Hymenoptera, vol 4. Nauka, St. Petersburg, pp 551–580Google Scholar
  33. Lam YM, Chen X, Pearson OM (1999) Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. Am Antiq 64(2):343–362CrossRefGoogle Scholar
  34. Løken A (1973) Studies of Scandinavian bumblebees (Hymenoptera, Apidae). Norsk Entomol Tidsskr 20(1):1–218Google Scholar
  35. Mangerud J, Kaufman D, Hansen J, Svendsen JI (2008) Ice-free conditions in Novaya Zemlya 35000–30000 cal years B.P., as indicated by radiocarbon ages and amino acid racemization evidence from marine molluscs. Polar Res 27(2):187–208.  https://doi.org/10.3402/polar.v27i2.6176 CrossRefGoogle Scholar
  36. Miller M, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, pp 1–8Google Scholar
  37. Panfilov DV (1978) The keys for the species of Family Apidae—Bees. In: Medvedev GS (ed) The keys for insects of the European part of USSR 3(1). Nauka, Leningrad, pp 508–519Google Scholar
  38. Papadopoulou A, Anastasiou I, Vogler AP (2010) Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Mol Biol Evol 27(7):1659–1672.  https://doi.org/10.1093/molbev/msq051 PubMedCrossRefGoogle Scholar
  39. Patton H, Andreassen K, Bjarnadóttir LR, Dowdeswell JA, Winsborrow MCM, Noormets R, Polyak L, Auriac A, Hubbard A (2015) Geophysical constraints on the dynamics and retreat of the Barents Sea ice sheet as a paleobenchmark for models of marine ice sheet deglaciation. Rev Geophys 53(4):1051–1098.  https://doi.org/10.1002/2015RG000495 CrossRefGoogle Scholar
  40. Patton H, Hubbard A, Andreassen K, Winsborrow M, Stroeven AP (2016) The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. Quat Sci Rev 153:97–121.  https://doi.org/10.1016/j.quascirev.2016.10.00 CrossRefGoogle Scholar
  41. Pittioni B (1942) Die boreoalpinen Hummeln und Schmarotzerhummeln (Hymen., Apidae, Bombinae). Teil 1. Mitt aus den Königlichen Naturwissenschaftlichen Inst in Sofia 15:155–218Google Scholar
  42. Pittioni B (1943) Die boreoalpinen Hummeln und Schmarotzerhummeln (Hymen., Apidae, Bombinae). Teil 2. Mitt aus den Königlichen Naturwissenschaftlichen Inst in Sofia 16:1–78Google Scholar
  43. Pointing SB, Bollard-Breen B, Gillman LN (2014) Diverse cryptic refuges for life during glaciation. Proc Natl Acad Sci USA 111(15):5452–5453.  https://doi.org/10.1073/pnas.1403594111 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Poppius B (1908) Zur Kenntnis der Hummel-Fauna der Halbinsel Kanin. Medd Soc pro Fauna et Flora Fennica 34:85–89Google Scholar
  45. Potapov GS, Kolosova YS, Gofarov MY (2014) Zonal distribution of bumblebee species (Hymenoptera, Apidae) in the North of European Russia. Entomol Rev 94(1):79–85.  https://doi.org/10.1134/S0013873814010096 CrossRefGoogle Scholar
  46. Proshchalykin MYu, Kupianskaya AN (2005) The bees (Hymenoptera, Apoidea) of the northern part of the Russian Far East. Far East Entomol 153:1–39Google Scholar
  47. Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23(10):564–571.  https://doi.org/10.1016/j.tree.2008.06.010 PubMedCrossRefGoogle Scholar
  48. Rambaut A, Suchard M, Drummond AJ (2013) Tracer v1.6. http://beast.bio.ed.ac.uk/tracer. Accessed 16 Jan 2017
  49. Rasmont P, Iserbyt S (2010) Genus Bombus. Atlas of the European Bees. STEP Project. Atlas Hymenoptera. http://www.atlashymenoptera.net. Accessed 16 Jan 2017
  50. Rasmont P, Franzén M, Lecocq T, Harpke A, Roberts SPM, Biesmeijer JC, Castro L, Cederberg B, Dvořák L, Fitzpatrick U, Gonseth Y, Haubruge E, Mahé G, Manino A, Michez D, Neumayer J, Ødegaard F, Paukkunen J, Pawlikowski T, Potts SG, Reemer M, Settele J, Straka J, Schweiger O (2015) Climatic risk and distribution atlas of European bumblebees. Biorisk 10:1–246.  https://doi.org/10.3897/biorisk.10.4749 CrossRefGoogle Scholar
  51. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542.  https://doi.org/10.1093/sysbio/sys029 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 1051–1067Google Scholar
  53. Serebryanny L, Malyasova E (1998) The quaternary vegetation and landscape evolution of Novaya Zemlya in the light of palynological records. Quat Int 45:59–70CrossRefGoogle Scholar
  54. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701CrossRefGoogle Scholar
  55. Skorikov AS (1912) Bombus lapponicus (F.) et ses formes (Hymenoptera, Bombidae). Rev Rus Entomol 12(1):95–102Google Scholar
  56. Skorikov AS (1937) Die grönländischen Hummeln im Aspekte der Zirkumpolarfauna. Særtryk af Entomol Medd 20:37–64Google Scholar
  57. Sparre-Schneider J (1909) Hymenoptera aculeata im arktischen Norwegen. Tromsø Mus Aarshefter 29:81–160Google Scholar
  58. Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16(11):608–613CrossRefGoogle Scholar
  59. Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc Biol Sci 277(1682):661–671.  https://doi.org/10.1098/rspb.2009.1272 CrossRefGoogle Scholar
  60. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingolfsson O, Jakobsson M, Kjær KH, Larsen E, Lokrantz H, Lunkka JP, Lyså A, Mangerud J, Matiouchkov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) Late quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23:1229–1271CrossRefGoogle Scholar
  61. Svensson BG (1979) Pyrobombus lapponicus auct., in Europe recognized as two species: P. lapponicus (Fabricius, 1793) and P. monticola (Smith, 1849) (Hymenoptera, Apoidea, Bombinae). Entomol Scand 10:275–296CrossRefGoogle Scholar
  62. Taeger A, Blank SM, Liston AD (2006) European sawflies (Hymenoptera: Symphyta)—a species checklist for the countries. In: Blank SM, Schmidt S, Taeger A (eds) Recent sawfly research: synthesis and prospects. Goecke & Evers, Keltern, pp 399–504Google Scholar
  63. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680PubMedPubMedCentralCrossRefGoogle Scholar
  65. Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol Evol 28(12):696–704.  https://doi.org/10.1016/j.tree.2013.09.001 PubMedCrossRefGoogle Scholar
  66. Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7(6):965–968.  https://doi.org/10.1111/j.1471-8286.2007.01821.x CrossRefGoogle Scholar
  67. Vorren TO, Landvik JY, Andreassen K, Laberg JS (2011) Glacial history of the Barents Sea region. Dev Quat Sci 15:361–372Google Scholar
  68. Williams PH, Cameron SA, Hines HM, Cederberg B, Rasmont P (2008) A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie 39:46–74.  https://doi.org/10.1051/apido:2007052 CrossRefGoogle Scholar
  69. Williams PH, Bystriakova N, Huang J, Miao Z, An J (2015a) Bumblebees, climate and glaciers across the Tibetan Plateau (Apidae: Bombus Latreille). Syst Biodivers 13(2):164–181.  https://doi.org/10.1080/14772000.2014.982228 CrossRefGoogle Scholar
  70. Williams PH, Byvaltsev AM, Cederberg B, Berezin MV, Ødegaard F, Rasmussen C, Richardson LL, Huang J, Sheffield CS, Williams ST (2015b) Genes suggest ancestral colour polymorphism are shared across morphologically cryptic species in Arctic bumblebees. PLoS ONE.  https://doi.org/10.1371/journal.pone.0144544 Google Scholar
  71. Yu Y, Harris AJ, He XJ (2010) S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol 56:848–850.  https://doi.org/10.1016/j.ympev.2010.04.011 PubMedCrossRefGoogle Scholar
  72. Yu Y, Harris AJ, Blair C, He XJ (2015) RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol Phylogenet Evol 87:46–49.  https://doi.org/10.1016/j.ympev.2015.03.008 PubMedCrossRefGoogle Scholar
  73. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876.  https://doi.org/10.1093/bioinformatics/btt49 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • G. S. Potapov
    • 1
    • 2
  • A. V. Kondakov
    • 1
    • 2
  • V. M. Spitsyn
    • 1
    • 2
  • B. Yu. Filippov
    • 2
  • Yu. S. Kolosova
    • 1
    • 2
  • N. A. Zubrii
    • 1
    • 2
  • I. N. Bolotov
    • 2
  1. 1.Federal Center for Integrated Arctic ResearchArkhangelskRussian Federation
  2. 2.Northern (Arctic) Federal UniversityArkhangelskRussian Federation

Personalised recommendations