Advertisement

Polar Biology

, Volume 40, Issue 12, pp 2499–2516 | Cite as

Characterization and husbandry of wild broodstock of the blackfin icefish Chaenocephalus aceratus (Lönnberg 1906) from the Palmer Archipelago (Southern Ocean) for breeding purposes

  • Nathalie R. Le FrançoisEmail author
  • Eileen Sheehan
  • Thomas Desvignes
  • Claude Belzile
  • John H. Postlethwait
  • H. William DetrichIII
Original Paper

Abstract

The blackfin icefish Chaenocephalus aceratus represents a key component of the fish fauna surrounding the Antarctic Peninsula that may be especially vulnerable to the effects of climate change. Although the sensitivity of adults to elevated temperature has been evaluated, little is known about the potential impact of a warmer temperature on other life history stages including embryos and larvae. To investigate thermal effects on embryogenesis and larval development, one must establish optimal zootechnical parameters for maintaining reproductively competent broodstock in captivity. During two consecutive years, we conducted an evaluation of body morphometrics and reproductive traits and investigated appropriate husbandry practices. Absolute and relative fecundities of females were estimated as 14,367 ± 5733 and 8.87 ± 2.35 (Mean ± SD), respectively. Mean wet and dry masses (±SD) of eggs were 24.5 ± 11.0 and 15.3 ± 4.8 mg, respectively and the mean egg diameter (±SD) was 0.31 ± 0.03 cm. Post-capture mortality was high and no spawning state females survived for a sufficiently long time to allow release or extraction of mature eggs. Injecting males with gonadotropin-releasing hormone (GnRH) increased their gonadosomatic index by 2-fold and stimulated spermiation. Mean (±SD) sperm cell count per mL post-GnRH treatment was 9.9 × 109 ± 2.5 × 109, and the spermatocrit was 16.9 ± 3.8%. Our findings indicate that extending the duration of female survival post-capture will be necessary for the production of fertile eggs. Suggestions for future research are discussed.

Keywords

Icefish Reproductive traits Breeding Husbandry Captivity Notothenioid 

Notes

Acknowledgements

The authors would like to thank the captains and crews of the Research Vessel Laurence M Gould (LMG) and Palmer Station staff and personnel for their help in collecting and maintaining our fish populations on board the LMG and at the Palmer Station facilities. We thank A. Savoie (Université du Québec à Rimouski) and L. Goetz (Northeastern University) for assistance in the evaluation of semen. The scientific and logistical support from station personnel is greatly appreciated, with a special thought for the chef M. Hiller for keeping the spirits of station personnel high during the 2014 winter. Support from la Société des Amis du Biodôme de Montréal (to N.R.L.F.) is also valued. This work was supported by NIH Grants R01AG031922 from the National Institute on Aging (J.H.P., H.W.D.) and 5R01OD011116 from the Office of the Director (J.H.P.), and by NSF Grants ANT-0944517 (H.W.D.), PLR-1247510 (H.W.D.), PLR-1444167 (H.W.D.), and PLR-1543383 (J.H.P., H.W.D, and T.D.) from the Office/Division of Polar Programs. This is contribution number 353 from the Northeastern University Marine Science Center.

Supplementary material

Supplementary material 1 (MP4 218023 kb)

References

  1. Albertson RC, Cresko W, Detrich HW III, Postlethwait JH (2009) Evolutionary mutant models forhuman disease. Trends Genet 25:74–81CrossRefPubMedGoogle Scholar
  2. Anderson RO, Neuman RM (1996) Length, weight, and associated structural indices. In: Murphy BR, Wills D (eds) Fisheries techniques. American Fisheries Society, Bethesda, pp 447–481Google Scholar
  3. Arkhipkin A, Jurgens E, Howes PN (2013) Spawning, egg development and early ontogenesis in rock cod Patagonotothen ramsayi (Regan, 1913) caught on the Patagonian Shelf and maintained in captivity. Polar Biol 36:1195–1204CrossRefGoogle Scholar
  4. Barbas JP, Mascarenhas D (2009) Cryopreservation of domestic animal sperm cells. Cell Tissue Bank 10:49–62CrossRefPubMedGoogle Scholar
  5. Beers JM, Sidell BD (2011) Thermal tolerance of antarctic notothenioid fishes correlates with level of circulating hemoglobin. Physiol Biochem Zool 84:353–362CrossRefPubMedGoogle Scholar
  6. Bromage NR, Roberts RJ (1995) Preservation of gametes. In: Bromage NR, Roberts RJ (eds) Broodstock management and egg and larval quality. Blackwell Scientific Publication Ltd., Oxford, pp 53–75Google Scholar
  7. Bryson AJ, Woodley CM, Karls RK, Hall KD, Weiland MA, Deng ZD, Carlson TJ, Eppard MB (2013) Comparison of 180-degree and 90-degree needle rotation to reduce wound size in PIT-injected juvenile Chinook salmon. Fish Res 143:201–204CrossRefGoogle Scholar
  8. Butts IAE, Trippel EA, Litvak MK (2009) The effect of sperm to egg ratio and gamete contact time on fertilization success in Atlantic cod Gadus morhua L. Aquaculture 286:89–94CrossRefGoogle Scholar
  9. Butts IAE, Babiak I, Ciereszko Litvak MK, Slowinska M, Soler C, Trippel EA (2011) Semen characteristics and their ability to predict sperm cryopreservation potential of Atlantic cod, Gadus morhua L. Theriogenology 75:1290–1300CrossRefPubMedGoogle Scholar
  10. Calvo J, Morriconi E, Rae GA (1999) Reproductive biology of the icefish Champsocephalus esox (Gunther, 1861) (Channichthyidae). Antarct Sci 11:140–149CrossRefGoogle Scholar
  11. Chambeyron F, Zohar Y (1990) A diluent for sperm cryopreservation of gilthead seabream, Sparus aurata. Aquaculture 90:345–352CrossRefGoogle Scholar
  12. Dean MJ, Hoffman WS, Zemechis DR, Armstrong MP (2014) Fine-scale diel and gender based patterns in behavior of Atlantic cod on a spawning ground in the Western Gulf of Maine. ICES J Mar Sci 71:1474–1489CrossRefGoogle Scholar
  13. Desvignes T, Detrich HW, Postlethwait JH (2016) Genomic conservation of erythropoietic microRNAs (erythromiRs) in white-blooded Antarctic icefish. Mar Genom 30:27–34CrossRefGoogle Scholar
  14. Detrich WH III, Jones CD, Kim S, North AW, Thurber A, Vacchi M (2005) Nesting behavior of the icefish Chaenocephalus aceratus at Bouvetoya Island, Southern Ocean. Polar Biol 28:828–832CrossRefGoogle Scholar
  15. Donaldson MR, Raby GD, Nguyen VN, Hinch SG, Patterson DA, Farrell AP, Rudd MA, Thompson LA, O’Connor CM, Colotelo AH, McConnachie SH, Cook KV, Robichaud D, English KK, Cook SJ (2013) Evaluation of a simple technique for recovering fish from capture stress: integrating physiology, biotelemetry, and social science to solve a conservation problem. Can J Fish Aquat Sci 70:90–100CrossRefGoogle Scholar
  16. Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the west Antarctic Peninsula. Philos Trans R Soc Lond B Biol Sci 362:67–94CrossRefPubMedGoogle Scholar
  17. Duncan N, Estevez A, Porta J, Carazo I, Norambuena F, Aguilera C, Gairin I, Bucci F, Valles R, Mylonas CC (2012) Reproductive development, GnRHa-induces spawning and egg quality of wild meagre (Argyrosomus regius) acclimatised to captivity. Fish Physiol Biochem 38:1273–1286CrossRefPubMedGoogle Scholar
  18. Egginton S (1994) Stress response in two Antarctic teleosts (Notothenia coriiceps Richardson and Chaenocephalus aceratus Lönnberg) following capture and surgery. J Comp Physiol B 164:482–491CrossRefGoogle Scholar
  19. Egginton S (1997) The physiological response of Antarctic fishes to environmental and experimental stress. Cybium 21(4):415–421Google Scholar
  20. Fernandez-Palacios H, Schuchardt D, Roo J, Hernandez-Cruz C, Izquierdo M (2015) Spawn quality and GnRHa induction efficiency in logfin yellowtail (Seriola rivoliana) broodstock kept in captivity. Aquaculture 435:167–172CrossRefGoogle Scholar
  21. Ferrando S, Castellano L, Gallus L, Ghigliotti L, Masin MA, Pisano E, Vacchi M (2014) A demonstration of nesting in two Antarctic icefish (Genus Chionodraco) using a fin dimorphism analysis and ex situ videos. PLoS ONE 9:e90512CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gerasimchook VV, Trozenco BG (1988) On the ecology of Chaenodraco wilsoni Regan 1914 (Channychthyidae, Perciformes). Antarktika 27:191–202 (in Russian) Google Scholar
  23. Guitreau AM, Eilts BE, Novelo ND, Tiersch TR (2012) Fish handling and ultrasound procedures for viewing the ovary of submersed, non-anesthetized, unrestrained channel catfish. N Am J Aquac 74:182–187CrossRefGoogle Scholar
  24. Guzman JM, Ramos J, Mylonas CC, Mananos EL (2009) Spawning performance and plasma levels of GnRHa and sex steroids in cultured female Senegalese sole (Solea senegalensis) treated with different GnRHa-delivery systems. Aquaculture 291:200–209CrossRefGoogle Scholar
  25. Holeton GF (1970) Oxygen uptake and circulation by hemoglobinless Antarctic fish (Chaenocephalus aceratus Löonberg) compared with red-blooded Antarctic fish. Comp Biochem Physiol 34:457–471CrossRefPubMedGoogle Scholar
  26. Hossie TJ, Murray DL (2011) Effects of structural refuge and density on foraging behaviour and mortality of hungry toadpoles subject to predation risk. Ethology 117:777–785CrossRefGoogle Scholar
  27. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  28. Johanessen T, Gjosaeter J, Moskness E (1993) Reproduction, spawning behaviour and captive breeding of the common wolffish Anarhichas lupus L. Aquaculture 115:41–45CrossRefGoogle Scholar
  29. Kellermann A (1990) Catalogue of early life stages of Antarctic notothenioid fishes. Berichte zur Polarforchung 67:47–136Google Scholar
  30. Kime DE, Tveiten H (2002) Unusual motility characteristics of sperm of spotted wolffish. J Fish Biol 61:1549–1559CrossRefGoogle Scholar
  31. Koch KH (1989) Reproduction in fish around Elephant Island. Archiv für Fischereiwissenschaft 39:71–210Google Scholar
  32. Kock KH (2005) Antarctic icefishes (Channichtyidae): a unique family of fishes. A review. Part I. Polar Biol 28:862–895CrossRefGoogle Scholar
  33. Kock KH, Pshenichnov LK, Devries AL (2006) Evidence of egg brooding and parental care in icefish and other notothenioids in the Southern Ocean. Antarct Sci 18:223–226CrossRefGoogle Scholar
  34. La Mesa M, Ashford J (2008) Age and early life history of juvenile scotia sea icefish Chaenocephalus aceratus, from Elephant and the South Shetland Islands. Polar Biol 31:221–228CrossRefGoogle Scholar
  35. La Mesa M, Caputo V, Rampa R, Vacchi M (2003) Macroscopic and histological analysis of gonads during the spawning season of Chionodraco hamatus (Pisces, Channichthyidae) off Terra Nova Bay, Ross Sea, Southern Ocean. Polar Biol 26:621–628CrossRefGoogle Scholar
  36. La Mesa M, Catalano B, Jones CD (2013) Early life history of the ocellated icefish, Chionodraco rastrospinosus, off the Antarctic peninsula. Antarct Sci 25:373–380CrossRefGoogle Scholar
  37. Lachance AA, Dutil JD, Larocque R, Daigle G (2010) Shelter use and behaviour of juvenile spotted wolfish (Anarhichas minor) in an experimental context. Environ Biol Fishes 88:207–215CrossRefGoogle Scholar
  38. Le François NR, Lamarre SG, Tveiten H, Blier PU, Bailey J (2008) Sperm cryoconservation in Anarhichas sp., endangered cold-water aquaculture species with internal fertilization. Aquac Int 16:273–279CrossRefGoogle Scholar
  39. Le François NR, Tveiten H, Halfyard LC, Foss A (2010) The wolffishes (Family: Anarhichadidae). In: Le François NR, Jobling M, Carter C, Blier PU (eds) Finfish aquaculture diversification. CABI, Oxfordshire, pp 417–431CrossRefGoogle Scholar
  40. Lisovenko LA (1988) Some new data on the reproduction of Chaenocephalus aceratus (Channychthyidae) in the South Georgia area. Voprosy Ikhtiologi 28:497–502Google Scholar
  41. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604Google Scholar
  42. Militelli MI, Macchi GJ, Rodrigues KA (2015) Maturity and fecundity of Champsocephalus gunnari, Chaenocephalus aceratus and Pseudochaenichthys georgianus in South Georgian and Shag Rocks Islands. Polar Sci 9:258–266CrossRefGoogle Scholar
  43. Millidine KJ, Armstrong JD, Metcalfe NB (2006) Presence of shelter reduces maintenance metabolism of juvenile salmon. Funct Ecol 20:839–845CrossRefGoogle Scholar
  44. Morgan MJ, Trippel EA (1996) Skewed sex ratios in spawning shoals of Atlantic cod (Gadus morhua). ICES J Mar Sci 53:820–826CrossRefGoogle Scholar
  45. Mylonas CC, Fostier A, Zanuy S (2010) Broodstock management and hormonal manipulations of fish reproduction. Gen Comp Endocrinol 165:516–534CrossRefPubMedGoogle Scholar
  46. North AW (2001) Early life history strategies of notothenioids at South Georgia. J Fish Biol 58:496–505CrossRefGoogle Scholar
  47. Novelo ND, Tiersch TR (2012) A review of the use of ultrasonography in fish reproduction. N Am J Aquac 74:169–181CrossRefGoogle Scholar
  48. Olsen R (1955) A contribution to the systematics and biology of channichthyid fishes form South Georgia. Nytt Magasin for Zoologi 3:79–93Google Scholar
  49. Pörtner HO, Peck L, Somero G (2007) Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos Trans R Soc Lond B Biol Sci 362:2233–2258CrossRefPubMedPubMedCentralGoogle Scholar
  50. Postlethwait JH, Yan Y-L, Desvignes T, Allard C, Titus T, Le François NR, Detrich HW (2016) Embryogenesis and early skeletogenesis in the Antarctic bullhead notothen, Notothenia coriiceps. Dev Dyn 245:1066–1080CrossRefPubMedPubMedCentralGoogle Scholar
  51. R Core Team (2013) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  52. Reid DK, Clarke S, Collins MA, Belchier M (2007) Distribution and ecology of Chaenocephalus aceratus (Channichthyidae) around South Georgia and Shag Rocks (Southern Ocean). Polar Biol 30:1523–1533CrossRefGoogle Scholar
  53. Rhodes KL, Tupper MH (2008) The vulnerability of reproductively arctic squaretail coralgrouper (Plectropomus areolatus) to fishing. Fish Bull 106:194–203Google Scholar
  54. Riginella E, Mazzoldi C, Ashford J, Jones CD, Morgan C, La Mesa M (2016) Life history strategies of the Scotia Sea icefish, Chaenocephalus aceratus, along the southern Scotia Ridge. Polar Biol 39:497–509CrossRefGoogle Scholar
  55. Robinson KA, Hinch SG, Gale MK, Clark TD, Wilson SM, Donaldson MR, Farrell AP, Cooke SJ, Patterson DA (2013) Effects of post-capture ventilation assistance and elevated water temperature on sockeye salmon in a simulated capture-and-release experiment. Conserv Physiol. doi: 10.1093/conphys/cot015 PubMedPubMedCentralGoogle Scholar
  56. Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920CrossRefPubMedGoogle Scholar
  57. Somero GN (2011) Comparative physiology: a “crystal ball” for predicting consequences of global change. Am J Physiol Regul Integr Comp Physiol 301:R1–14CrossRefPubMedGoogle Scholar
  58. Stockley P, Gage MJG, Parker GA, Møller AP (1997) Sperm competition in fishes: the evolution of testis size and ejaculate characteristics. Am Nat 149:933–954CrossRefPubMedGoogle Scholar
  59. Suquet M, Cosson J, De La Gandara F, Mylonas CC, Papadaki M, Lallemant S, Fauvel C (2010) Sperm features of captive Atlantic Bluefin tuna (Thunnus thynnus). J Appl Ichthyol 26:775–778CrossRefGoogle Scholar
  60. Sutton CP, Manning MJ, Stevens DW, Marriott PM (2008) Biological parameters for icefish (Chionobathyscus dewitti) in the Ross Sea, Antarctica. CCAMLR Sci 15:139–165Google Scholar
  61. Suuronen P (2005) Mortality of fish escaping trawl gears. FAO fisheries technical paper no. 478Google Scholar
  62. Trippel EA (2003) Estimation of male reproductive success of marine fishes. J Northwest Atl Fish Sci 33:81–113CrossRefGoogle Scholar
  63. Trippel EA, Butts IAE, Babin A, Neil SRE, Feindel NJ, Benfey TJ (2014) Effects of reproduction on growth and survival in Atlantic cod, Gadus morhua, assessed by comparison to triploids. J Exp Mar Biol Ecol 451:35–43CrossRefGoogle Scholar
  64. Tvedt HB, Benfey TJ, Martin-Robichaud DJ, Power J (2001) The relationship between sperm density, spermatocrit, sperm motility and fertilization success in Atlantic halibut, Hippoglossus hippoglossus. Aquaculture 194:191–200CrossRefGoogle Scholar
  65. Tveiten H, Johnsen HK (1999) Temperature experienced during vitellogenesis influences ovarian maturation and the timing of ovulation in common wolffish. J Fish Biol 55:809–819CrossRefGoogle Scholar
  66. Vanella FA, Calvo J, Morriconi ER, Aureliano DR (2005) Somatic energy content and histological analysis of the gonads in Antarctic fish from the Scotia Arc. Sci Mar 69:305–316CrossRefGoogle Scholar
  67. Vermeirssen ELM, Scott AP, Mylonas CC, Zohar Y (1998) Gonadotrophin-releasing hormone agonist stimulates milt fluidity and plasma concentrations of 17, 20ß-dihydroxylated and 5ß-reduced, 3α-hydroxylated C21 steroids in male plaice (Pleuronectes platessa). Gen Comp Endocrinol 112:163–177CrossRefPubMedGoogle Scholar
  68. Wallace RA, Selman R (1981) Cellular and dynamic aspects of oocyte growth in Teleosts. Am Zool 21:325–343CrossRefGoogle Scholar
  69. West G (1990) Methods of assessing ovarian development in fishes: a review. Aust J Mar Freshw Res 41:199–222CrossRefGoogle Scholar
  70. Yanagimachi R, Cherr GN, Pillai MC, Baldwin JD (1992) Factors controlling sperm entry into the micropyles of salmonid and herring eggs. Dev Growth Differ 34:447–461CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nathalie R. Le François
    • 1
    Email author
  • Eileen Sheehan
    • 2
  • Thomas Desvignes
    • 3
  • Claude Belzile
    • 4
  • John H. Postlethwait
    • 3
  • H. William DetrichIII
    • 2
  1. 1.Division des collections vivantes et de la rechercheBiodôme de Montréal, Espace pour la vieMontréalCanada
  2. 2.Department of Marine and Environmental Sciences, Marine Science CenterNortheastern UniversityNahantUSA
  3. 3.Institute of NeuroscienceUniversity of OregonEugeneUSA
  4. 4.Institut des sciences de la mer (ISMER), Université du Québec à RimouskiRimouskiCanada

Personalised recommendations