Plant Cell Reports

, Volume 38, Issue 8, pp 951–963 | Cite as

The tomato MADS-box gene SlMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport

  • Anzhou Li
  • Guoping Chen
  • Xiaohui Yu
  • Zhiguo Zhu
  • Lincheng Zhang
  • Shengen Zhou
  • Zongli HuEmail author
Original Article


Key message

Overexpression of SlMBP9 reduced auxin biosynthesis and transport, and negatively regulated lateral root formation and apical dominance.


MADS-box transcription factors play a critical role in plant development. In this study, we describe SlMBP9, a novel MADS-box gene that is expressed in the roots of tomato plants. Tomato lines that over- or under-expressed SlMBP9 were generated using a transgenic approach. The number of lateral roots (LRs) were reduced in SlMBP9-overexpressing lines but slightly increased in SlMBP9-silenced lines. A physiological index revealed that the auxin content significantly decreased in the root maturation zone of the overexpression lines. In addition, gene expression analysis revealed that the expression of the polar auxin transporter genes PIN1 and ABCB19/MDR1 and genes involved in auxin biosynthesis was downregulated in the stems of overexpression lines, which is consistent with the reduced accumulation of auxin in the root maturation zone. Exogenous indole-3-acetic acid (auximone) rescued the lateral root phenotypes of the SlMBP9-overexpressing lines. Overexpression of SlMBP9 resulted in dwarf plants, enhanced lateral buds and reduced the gibberellin content in the stems. Together, these results suggest that SlMBP9 plays a negative role in the process of auxin biosynthesis and transport.


Lateral root SlMBP9 Tomato Dwarf plant Lateral bud 



Indole-3-acetic acid


Lateral root





This work was supported by National Natural Science Foundation of China (No. 31572129), and the National Natural Science Foundation of Chongqing of China (No. cstc2015jcyjA80026).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2019_2417_MOESM1_ESM.docx (596 kb)
Supplementary material 1 (DOCX 595 kb)
299_2019_2417_MOESM2_ESM.docx (25 kb)
Supplementary material 2 (DOCX 25 kb)


  1. Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538CrossRefGoogle Scholar
  2. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602CrossRefGoogle Scholar
  3. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44CrossRefGoogle Scholar
  4. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852CrossRefGoogle Scholar
  5. Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang HM, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171CrossRefGoogle Scholar
  6. Chen GP, Hackett R, Walker D, Taylor A, Lin ZF, Grierson D (2004) Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136:2641–2651CrossRefGoogle Scholar
  7. De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang HM (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555CrossRefGoogle Scholar
  8. Dong TT, Hu ZL, Deng L, Wang Y, Zhu MK, Zhang JL, Chen GP (2013) A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol 163:1026–1036CrossRefGoogle Scholar
  9. Expósitorodríguez M, Borges AA, Borgespérez A, Hernandez M, Perez JA (2007) Cloning and biochemical characterization of ToFZY, a tomato gene encoding a flavin monooxygenase involved in a tryptophan-dependent auxin biosynthesis pathway. J Plant Growth Regul 26:329–340CrossRefGoogle Scholar
  10. Expósitorodríguez M, Borges AA, Borgespérez A, Perez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131–142CrossRefGoogle Scholar
  11. Expósitorodríguez M, Borges AA, Borgespérez A, Perez JA (2011) Gene structure and spatiotemporal expression profile of tomato genes encoding YUCCA-like flavin monooxygenases: the ToFZY gene family. Plant Physiol Biochem 49:782–791CrossRefGoogle Scholar
  12. Fonseca GS, Garcia B, Garcia M, Flores U, Pelaz S, Alvarez-Buylla E (2007) XAANTAL3 (AGL17) is an ANR1-like MADS-box gene that regulates Arabidopsis root meristem behaviour and mediates morphogenetic responses under nitrogen and phosphorus starvation. Dev Biol 306:449CrossRefGoogle Scholar
  13. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809CrossRefGoogle Scholar
  14. Fu XD, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743CrossRefGoogle Scholar
  15. Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494CrossRefGoogle Scholar
  16. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168CrossRefGoogle Scholar
  17. Goh T, Kasahara H, Mimura T, Kamiya Y, Fukaki H (2012) Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling. Philos Trans R Soc B 367:1461–1468CrossRefGoogle Scholar
  18. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460CrossRefGoogle Scholar
  19. Gutierrez L, Mongelard G, Flokova K, Pacurar DI, Novak O, Staswick P, Kowalczyk M, Pacurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527CrossRefGoogle Scholar
  20. King KE, Moritz T, Harberd NP (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767–776Google Scholar
  21. Kohlen W, Charnikhova T, Lammers M, Pollina T, Toth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, Lopez-Raez JA (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547CrossRefGoogle Scholar
  22. Lee HW, Kim NY, Lee DJ, Kim J (2009) LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol 151:1377–1389CrossRefGoogle Scholar
  23. Lee HW, Cho C, Kim J (2015) Lateral organ boundaries domain16 and 18 act downstream of the AUXIN1 and LIKE-AUXIN3 auxin influx carriers to control lateral root development in Arabidopsis. Plant Physiol 168:1792–U1177Google Scholar
  24. Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485–3495CrossRefGoogle Scholar
  25. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44Google Scholar
  26. Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33:867–874CrossRefGoogle Scholar
  27. Muday GK, Haworth P (1994) Tomato root-growth, gravitropism, and lateral development—correlation with auxin transport. Plant Physiol Biochem 32:193–203Google Scholar
  28. Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187CrossRefGoogle Scholar
  29. Negi S, Sukumar P, Liu X, Cohen JD, Muday GK (2010) Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 61:3–15CrossRefGoogle Scholar
  30. Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130CrossRefGoogle Scholar
  31. Omelyanchuk NA, Kovrizhnykh VV, Oshchepkova EA, Pasternak T, Palme K, Mironova VV (2016) A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC Plant Biol 16:5–16CrossRefGoogle Scholar
  32. Pattison RJ, Catala C (2012) Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J 70:585–598CrossRefGoogle Scholar
  33. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203CrossRefGoogle Scholar
  34. Peng JR, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Gene Dev 11:3194–3205CrossRefGoogle Scholar
  35. Peret B, De Rybel B, Casimiro I, Benkova E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408CrossRefGoogle Scholar
  36. Perrine-Walker FM, Jublanc E (2014) The localization of auxin transporters PIN3 and LAX3 during lateral root development in Arabidopsis thaliana. Biol Plant 58:778–782CrossRefGoogle Scholar
  37. Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Phys 52:67–88CrossRefGoogle Scholar
  38. Rincon CA, Raper CD, Patterson RP (2003) Genotypic differences in root anatomy affecting water movement through roots of soybean. Int J Plant Sci 164:543–551CrossRefGoogle Scholar
  39. Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A(1) biosynthesis in pea. Plant J 21:547–552CrossRefGoogle Scholar
  40. Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for Mads box genes in Arabidopsis development. Plant Cell 7:1259–1269Google Scholar
  41. Sassi M, Lu YF, Zhang YH, Wang J, Dhonukshe P, Blilou I, Dai MQ, Li J, Gong XM, Jaillais Y, Yu XH, Traas J, Ruberti I, Wang HY, Scheres B, Vernoux T, Xu J (2012) COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1-and PIN2-dependent auxin transport in Arabidopsis. Development 139:3402–3412CrossRefGoogle Scholar
  42. Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K (2002) The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA 99:1064–1069CrossRefGoogle Scholar
  43. Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163CrossRefGoogle Scholar
  44. Schumacher K, Schmitt T, Rossberg M, Schmitz C, Theres K (1999) The lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA 96:290–295CrossRefGoogle Scholar
  45. Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–3573CrossRefGoogle Scholar
  46. Silverstone AL, Mak PYA, Martinez EC, Sun TP (1997) The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146:1087–1099Google Scholar
  47. Swarup R, Bennett M (2003) Auxin transport: the fountain of life in plants? Dev Cell 5:824–826CrossRefGoogle Scholar
  48. Thimann KV, Skoog F (1933) Studies on the growth hormone of plants III The inhibiting action of the growth substance on bud development. Proc Natl Acad Sci USA 19:714–716CrossRefGoogle Scholar
  49. Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721Google Scholar
  50. Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A, Yang H, Mravec J, Sauer M, Cheng Y, Adamec J, Nagashima A, Geisler M, Sakai T, Friml J, Peer WA, Murphy AS (2009) ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J 57:27–44CrossRefGoogle Scholar
  51. Verstraeten I, Schotte S, Geelen D (2014) Hypocotyl adventitious root organogenesis differs from lateral root development. Front Plant Sci 5:495–507CrossRefGoogle Scholar
  52. Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311CrossRefGoogle Scholar
  53. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science 296:343–346CrossRefGoogle Scholar
  54. Walch-Liu P, Ivanov II, Filleur S, Gan YB, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot Lond 97:875–881CrossRefGoogle Scholar
  55. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216CrossRefGoogle Scholar
  56. Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jurgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885CrossRefGoogle Scholar
  57. Wu G, Lewis DR, Spalding EP (2007) Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell 19:1826–1837CrossRefGoogle Scholar
  58. Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, Mao JL, Xiang CB (2014) MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant 7:1653–1669CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anzhou Li
    • 1
  • Guoping Chen
    • 1
  • Xiaohui Yu
    • 1
  • Zhiguo Zhu
    • 1
  • Lincheng Zhang
    • 1
  • Shengen Zhou
    • 1
  • Zongli Hu
    • 1
    Email author
  1. 1.Laboratory of Molecular Biology of Tomato, Bioengineering CollegeChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations