Advertisement

Biochemistry and molecular biology of capsaicinoid biosynthesis: recent advances and perspectives

  • Magda Lisette Arce-Rodríguez
  • Neftalí Ochoa-AlejoEmail author
Review Article

Abstract

The most widely known characteristic of chili pepper fruits is their capacity to produce capsaicinoids, which are responsible for the pungent sensation. The capsaicinoids have several uses in different areas, such as the pharmaceutical, cosmetic and agronomic industries, among others. They are synthesized by the condensation of vanillylamine (derived from phenylalanine) with a branched-chain fatty acid (from valine or leucine precursors), and they generally accumulate in the placental tissue of the chili pepper fruits. The pungency grade depends on the genotype of the plant but is also affected by external stimuli. In recent years, new structural and regulatory genes have been hypothesized to participate in the capsaicinoid biosynthetic pathway. Moreover, the role of some of these genes has been investigated. Substantial progress has been made in discerning the molecular biology of this pathway; however, many questions remain unsolved. We previously reviewed some aspects of the biochemistry and molecular biology of capsaicinoid biosynthesis (Aza-González et al. Plant Cell Rep 30:695–706. Aza-González et al., Plant Cell Rep 30:695–706, 2011), and in this review, we describe advances made by different researchers since our previous review, including the contribution of omics to the knowledge of this pathway.

Keywords

Capsaicinoids Capsicum Chili pepper Genomics Metabolomics Proteomics Transcriptomics 

Notes

Acknowledgements

This work was supported by a grant from the National Council for Science and Technology [Consejo Nacional de Ciencia y Tecnología (CONACYT)], Mexico, project 1570.

Author contribution statement

ML-AR: collected information and prepared the manuscript. N-OA: planned, organized and edited the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Abraham-Juárez MR, Rocha-Granados MDC, López MG, Rivera-Bustamante RF, Ochoa-Alejo N (2008) Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 227:681–695CrossRefGoogle Scholar
  2. Aizat WM, Able JA, Stangoulis JCR, Able AJ (2013) Proteomic analysis during Capsicum ripening reveals differential expression of ACC oxidase isoform 4 and other candidates. Funct Plant Biol 40:1115–1128CrossRefGoogle Scholar
  3. Aizat WM, Diuas DA, Stangoulis JCR, Able JA, Roessner U, Able AJ (2014) Metabolomics of Capsicum ripening reveals modification of the ethylene related-pathway and carbon metabolism. Postharvest Biol Technol 89:19–31CrossRefGoogle Scholar
  4. Altuzar-Molina AR, Muñoz-Sánchez JA, Vázquez-Flota F, Monforte-González M, Racagni-Di Palma G, Hernández-Sotomayor SMT (2011) Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiol Biochem 49:151–158CrossRefGoogle Scholar
  5. Aluru MR, Mazourek M, Landry LG, Curry J, Jahn M, O’Connell MA (2003) Differential expression of fatty acid synthase genes, Acl, Fat and Kas, in Capsicum fruit. J Exp Bot 54:1655–1664CrossRefGoogle Scholar
  6. Antonio AS, Wiedemann LSM, Veiga Junior VF (2018) The genus Capsicum: a phytochemical review of bioactive secondary metabolites. RSC Adv 8:25767–25784CrossRefGoogle Scholar
  7. Aranha BC, Hoffman JF, Barbieri RL, Rombaldi CV, Chaves FC (2017) Untargeted metabolomic analysis of Capsicum spp. By GC-MS. Phytochem Anal 28:439–447CrossRefGoogle Scholar
  8. Arce-Rodríguez ML, Ochoa-Alejo N (2015) Silencing AT3 gene reduces the expression of pAmt, BCAT, Kas. and Acl genes involved in capsaicinoid biosynthesis in chili pepper fruits. Biol Plant 59:477–484CrossRefGoogle Scholar
  9. Arce-Rodríguez ML, Ochoa-Alejo N (2017) An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis. Plant Physiol 174:1359–1370CrossRefGoogle Scholar
  10. Aza-González C, Núñez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep 30:695–706CrossRefGoogle Scholar
  11. Baas-Espinola FM, Castro-Concha LA, Vázquez-Flota F, Miranda-Ham ML (2016) Capsaicin synthesis requires in situ phenylalanine and valine formation in in vitro maintained placentas from Capsicum chinense. Molecules 21:799CrossRefGoogle Scholar
  12. Barbero GF, de Aguiar AC, Carrera C, Olachea Á, Ferreiro-González M, Martínez J et al (2016) Evolution of Capsaicinoids in Peter Pepper (Capsicum annuum var. annuum) During Fruit Ripening. Chem Biodivers 13:1068–1075CrossRefGoogle Scholar
  13. Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86CrossRefGoogle Scholar
  14. Bosland PW, Coon D, Cooke PH (2015) Novel formation of ectopic (nonplacental) capsaicinoid secreting vesicles on fruits walls explains the morphological mechanism for super-hot Chile peppers. J Am Soc Hort Sci 140:253–256CrossRefGoogle Scholar
  15. Chee MJY, Lycett GW, Khoo T-J, Chin CF (2017) Bioengineering of the plant culture of Capsicum frutescens with vanillin synthase gene for the production of vanillin. Mol Biotechnol 59:1–8CrossRefGoogle Scholar
  16. Deshpande RB (1935) Studies in indian chillies: 4. Inheritance of pungency in Capsicum annuum L. Indian J Agric Sci 5:513–516Google Scholar
  17. Fujiwake H, Suzuki T, Oka S, Iwai K (1980) Enzymatic formation of capsaicinoid from vanillylamine and iso-type fatty acids by cell-free extracts of Capsicum annuum var. Karayatsubusa. Agric Biol Chem 44:2907–2912Google Scholar
  18. Gangadhar BH, Mishra RK, Pandian G, Park SW (2012) Comparative study of color, pungency, and biochemical composition in chili pepper (Capsicum annuum) under different light emitting diode treatments. HortScience 47:1729–1735CrossRefGoogle Scholar
  19. Garruña-Hernández R, Monforte-González M, Canto-Aguilar A, Vázquez-Flota F, Orellana R (2013) Enrichment of carbon dioxide in the atmosphere increases the capsaicinoids content in Habanero peppers (Capsicum chinense Jacq.). J Sci Food Agric 93:1385–1388CrossRefGoogle Scholar
  20. Godinez-Vidal D, Rocha-Sosa M, Sepúlveda-García EB, Lara-Reyna J, Rojas-Martínez R, Zavaleta-Mejía E (2008) Phenylalanine ammonia lyase activity in chilli CM-334 infected with Phytophthora capsici and Nacobbus aberrans. Eur J Plant Pathol 120:299–303CrossRefGoogle Scholar
  21. González-Zamora A, Sierra-Campos E, Luna-Ortega JG, Pérez-Morales R, Ortiz JCR, García-Hernández JL (2013) Characterization of different Capsicum varieties by evaluation of their capsaicinoids content by high performance liquid chromatography, determination of pungency and effect of high temperature. Molecules 18:13471–13486CrossRefGoogle Scholar
  22. Gurung T, Techawongstien S, Surihan B, Techawongstien S (2011) Impact of environments on the accumulation of capsaicinoids in Capsicum spp. HortScience 46:1576–1581CrossRefGoogle Scholar
  23. Gurung T, Techawongstien S, Suriharn B, Techawongstien S (2012) Stability analysis of yield and capsaicinoids content in chili (Capsicum spp.) grown across six environments. Euphytica 187:11–18CrossRefGoogle Scholar
  24. Gururaj HB, Padma MN, Giridhar P, Ravishankar GA (2012) Functional validation of Capsicum frutescens amino-transferase gene involved in vanillylamine biosynthesis using Agrobacterium mediated genetic transformation studies in Nicotiana tabacum and Capsicum frutescens calli cultures. Plant Sci 195:96–105CrossRefGoogle Scholar
  25. Haak DC, McGinnis LA, Levey DJ, Tewksbury JJ (2012) Why are not all chilies hot? A trade-off limits pungency. Proc R Soc B 279:2012–2017CrossRefGoogle Scholar
  26. Han K, Lee H-Y, Ro N-Y, Hur O-S, Lee J-H, Kwon J-K, Kang B-C (2018) QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12894 Google Scholar
  27. Han K, Jang S, Lee J-H, Lew D-G, Kwon J-K, Kang B-C (2019) A MYB transcription factor is a candidate to control pungency in Capsicum annuum. Theor Appl Genet.  https://doi.org/10.1007/s00122-018-03275-z Google Scholar
  28. Hulse-Kemp AM, Maheshwari S, Stoffel K, Hill TA, Jaffe D, Williams SR, Weisenfeld N, Ramakrishnan S, Kumar V, Shah P, Schatz MC, Church DM, Van Deynze A (2018) Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. Hortic Res 5:4CrossRefGoogle Scholar
  29. Iwai K, Suzuki T, Fujiwake H (1979) Formation and accumulation of pungent principle of hot pepper fruits, capsaicin and its analogs, in Capsicum annuum var Karayatsubusa at different growth-stages after flowering. Agric Biol Chem 43:2493–2498Google Scholar
  30. Jeeatid N, Suriharn B, Techawonstien S, Chanthai S, Bosland PW, Techawongstien S (2018) Evaluation of the effect of genotype-by-environment interaction on capsaicinoid production in hot pepper hybrids (Capsicum chinense Jacq.) under controlled environment. Sci Hortic 235:334–339CrossRefGoogle Scholar
  31. Johnson CD, Decoteau DR (1996) Nitrogen and potassium fertility affects jalapeño pepper plant growth, pot yield and pungency. HortScience 31:1119–1123CrossRefGoogle Scholar
  32. Kehie M, Kumaria S, Tandon P (2016) Biotechnological enhancement of capsaicin biosynthesis in cell suspension cultures of Naga King chili (Capsicum chinense Jacq.). Bioprocess Biosyst Eng 39:205–210CrossRefGoogle Scholar
  33. Keyhaninejad N, Curry J, Romero J, O’Connell MA (2014) Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit. Plant Sci 215–216:59–68CrossRefGoogle Scholar
  34. Khan FA, Mahmood T, Ali M, Saeed A, Maalik A (2014) Pharmacological importance of an ethnobotanical plant: Capsicum annuum L. Nat Prod Res 16:1267–1274CrossRefGoogle Scholar
  35. Kim M, Kim S, Kim S, Kim BD (2001) Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization. Mol Cells 11:213–219Google Scholar
  36. Kim JS, Park M, Lee DJ, Kim BD (2009) Characterization of putative capsaicin synthase promoter activity. Mol Cells 28:331–339CrossRefGoogle Scholar
  37. Kim S, Park M, Yeom S-I, Kim Y-M, Lee JM, Lee H-A, Seo E, Choi J, Cheong K, Kim K-T, Jung K, Lee G-W, Oh S-K, Bae C, Kim S-B, Lee H-Y, Kim S-Y, Kim M-S, Kang B-C, Jo YD, Yang H-B, Jeong H-J, Kang W-H, Kwon J-K, Shin C, Lim JY, Park JH, Huh JH, Kim J-S, Kim B-D, Cohen O, Paran I, Suh MC, Lee SB, Kim Y-K, Shin Y, Noh S-J, Park J, Seo YS, Kwon S-Y, Kim HA, Park JM, Kim H-J, Choi S-B, Choi S-B, Bosland PW, Reeves G, Jo S-H, Lee B-W, Cho H-T, Choi H-S, Lee M-S, Yu Y, Choi YD, Park B-S, Ashrafi DA, Hill H, Lim T, Pai WT, Ahn H-S, Yeam HK, Giovnnoni I, Rose JJ, Sorensen JKC, Lee I, Kim S-J, Choi RW, Choi I-Y, Lim B-S, Lee J-S, Choi Y-H D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278CrossRefGoogle Scholar
  38. Koeda S, Sato K, Tomi K, Tanaka Y, Takisawa R, Hosokawa M, Doi M, Nakazaki T, Kitajima A (2014) Analysis of non-pungency, aroma, and origin of a Capsicum chinense cultivar from a Caribbean island. J Jpn Soc Hort Sci 3:244–251CrossRefGoogle Scholar
  39. Lang Y, Kisaka H, Sugiyama R, Nomura K, Morita A, Watanabe T, Tanaka Y, Yanzawa S, Miwa T (2009) Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 sweet. Plant J 59:953–961CrossRefGoogle Scholar
  40. Lee JM, Kim S, Lee JY, Yoo EY, Cho MC, Cho MR, Kim B-D, Bahk YY (2006) A differentially expressed proteomic analysis in placental tissues in relation to pungency during the pepper fruit development. Proteomics 6:5248–5259CrossRefGoogle Scholar
  41. Levey DJ, Tewksbury JJ, Cipollini ML, Carlo TA (2006) A field test of the direct deterrence hypothesis in two species of wild chili. Oecologia 150:61–68CrossRefGoogle Scholar
  42. Liu S, Li W, Wu Y, Chen C, Lei J (2013) De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS One 8(1):e48156.  https://doi.org/10.1371/journal.pone.0048156 CrossRefGoogle Scholar
  43. Martínez-López LA, Ochoa-Alejo N, Martínez O (2014) Dynamics of chili pepper transcriptome during fruit development. BMC Genom 15:143CrossRefGoogle Scholar
  44. Mazourek M, Pujar A, Borovsky Y, Paran I, Mueller L, Jahn MM (2009) A dynamic interface for capsaicinoid systems biology. Plant Physiol 150:1806–1821CrossRefGoogle Scholar
  45. Medina-Lara F, Echeverría-Machado I, Pacheco-Arjona R, Ruiz-Lau N, Guzmán-Antonio A, Martinez-Estevez M (2008) Influence of nitrogen and potassium fertilization on fruiting and capsaicin content in Habanero pepper (Capsicum chinense Jacq.). HortScience 43:1549–1554CrossRefGoogle Scholar
  46. Meghvansi MK, Siddiqui S, Md HK, Gupta VK, Vairale MG, Gogoi HK, Singh L (2010) Naga chilli: A potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J Ethnopharmacol 132:1–14CrossRefGoogle Scholar
  47. Monforte-González M, Guzmán-Antonio A, Uuh-Chim F, Vázquez-Flota F (2010) Capsaicin accumulation is related to nitrate content in placentas of habanero peppers (Capsicum chinense Jacq.). Sci J Food Agric 90:764–768Google Scholar
  48. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:608–612CrossRefGoogle Scholar
  49. Nagy Z, Daood H, Ambrózy Z, Helyes L (2015) Determination of polyphenols, capsaicinoids, and vitamin C in new hybrids of chili peppers. J Anal Methods Chem.  https://doi.org/10.1155/2015/102125 Google Scholar
  50. Nimmakayala P, Abburi VL, Saminathan T, Alaparthi SB, Almeida A, Davenport B, Nadimi M, Davidson J, Tonapi K, Yadav L, Malkaram S, Vajja G, Hankins G, Harris R, Park M, Choi D, Stommel J, Reddy UK (2016) Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L. Sci Rep 6:38081CrossRefGoogle Scholar
  51. Noichinda S, Bodhipadma K, Moungjomprang D, Thongnurung N, Kasiolarn H (2016) Harvesting indices of Chi-fah Yai pepper (Capsicum annuum L.) fruit. J Appl Sci 15:20–23CrossRefGoogle Scholar
  52. Ochoa-Alejo N, Ramírez-Malagón R (2001) In vitro chili pepper biotechnology. In Vitro Cell Dev Biol Plant 37:701–729CrossRefGoogle Scholar
  53. Ogawa K, Murota K, Shimura H, Furuya M, Togawa Y, Matsumura T, Masuta T (2015) Evidence of capsaicin synthase activity of the Pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper. BMC Plant Biol 15:1–10CrossRefGoogle Scholar
  54. Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie AR, Giovannoni JJ (2012) Integrative comparative analysis of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol 159:1713–1729CrossRefGoogle Scholar
  55. Park YJ, Nishikawa T, Minami M, Nemoto K, Iwasaki T, Matsushima K (2015) A low- pungency S3212 genotype of Capsicum frutescens caused by a mutation in the putative aminotransferase (p-AMT) gene. Mol Genet Genom 290:2217–2224CrossRefGoogle Scholar
  56. Perucka I, Materska M (2001) Phenylalanine ammonia-lyase and antioxidant activities of lipophilic fraction of fresh pepper fruits Capsicum annuum L. Innov Food Sci Emerg Technol 2:189–192CrossRefGoogle Scholar
  57. Phimchan P, Techawongstien S, Chanthai S, Bosland PW (2012) Impact of drought stress on the accumulation of capsaicinoids in Capsicum cultivars with different initial capsaicinoid levels. HortScience 47:1204–1209CrossRefGoogle Scholar
  58. Phimchan P, Chanthai S, Bosland PW, Techawongstien S (2014) Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in Capsicum under drought stress. J Agric Food Chem 62:7057–7062CrossRefGoogle Scholar
  59. Purkayastha J, Alam SI, Sengupta N, Nath B, Kumar B, Gogoi HK, Singh L, Veer V (2014) World’s hottest Bhut Joloquia (Capsicum assamicum) proteome revealed: comparative proteomic analysis of differentially expressed proteins. J Proteom Bioinform 7:389–402Google Scholar
  60. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, González-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernández S, Leyva-González MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum. domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140CrossRefGoogle Scholar
  61. Rahman MJ, Inden H (2012) Effect of nutrient solution and temperature on capsaicin content and yield contributing characteristics in six sweet pepper (Capsicum annuum L.) cultivars. J Food Agric Environ 10(1):524–529Google Scholar
  62. Reddy UK, Almeida A, Abburi VL, Alaparthi SB, Unselt D, Hankins G, Park M, Choi D, Nimmakayala P (2014) Identification of gene-specific polymorphisms and association pathway metabolites in Capsicum annuum L. collections. PLoS One 9(1):e86393.  https://doi.org/10.1371/journal.pone.0086393 CrossRefGoogle Scholar
  63. Rodas-Junco BA, Cab-Guillén Y, Muñoz-Sánchez JA, Vázquez-Flota F, Monforte-González M, Hernández-Sotomayor SMT (2013) Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures. Plant Signal Behav 8:37–41CrossRefGoogle Scholar
  64. Srinivasan K (2016) Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: a review. Crit Rev Food Sci Nutr 56:1488–1500CrossRefGoogle Scholar
  65. Stellari GM, Mazourek M, Jahn MM (2010) Contrasting modes for loss of pungency between cultivated and wild species of Capsicum. Heredity 104:460–471CrossRefGoogle Scholar
  66. Stewart C, Kang BC, Liu K, Mazourek M, Moore SL, Eun YY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688CrossRefGoogle Scholar
  67. Stewart C, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58:979–991CrossRefGoogle Scholar
  68. Sung Y, Chang Y-Y, Ting N-L (2005) Capsaicin biosynthesis in water stress hot pepper fruits. Bot Bull Acad Sin 46:35–42Google Scholar
  69. Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010a) Newly mutated putative-aminotransferase in nonpungent pepper (Capsicum annuum) results in biosynthesis of capsinoids, capsaicinoid analogues. J Agric Food Chem 58:1761–1767CrossRefGoogle Scholar
  70. Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010b) Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, nonpungent capsaicinoid analogues, in mildly pungent chili peppers (Capsicum chinense). J Agric Food Chem 58:11762–11767CrossRefGoogle Scholar
  71. Tanaka Y, Nakashima F, Kirii E, Goto T, Yoshida Y, Yasuba K (2017) Difference in capsaicinoid biosynthesis gene expression in the pericarp reveals elevation of capsaicinoid contents in chili peppers (Capsicum chinense). Plant Cell Rep 36:267–279CrossRefGoogle Scholar
  72. Tewksbury JJ, Nabhan GP (2001) Direct deterrence by capsaicin in chilies. Nature 412:403–404CrossRefGoogle Scholar
  73. Thiele R, Mueller-Seitz E, Petz M (2008) Chili pepper fruits: Presumed precursors of fatty acids characteristic for capsaicinoids. J Agric Food Chem 56:4219–4224CrossRefGoogle Scholar
  74. Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 2:105–113Google Scholar
  75. Villa-Ruano N, Velásquez-Valle R, Zepeda-Vallejo G, Pérez-Hernández N, Velázquez-Ponce M, Arcos-Adame VM, Becerra-Martínez E (2018)) 1H NMR-based metabolomic profiling for identification of metabolites in Capsicum annuum cv. Mirasol infected by beet mild curly top virus (BMCTV). Food Res Int 106:870–877CrossRefGoogle Scholar
  76. Wahyuni Y, Ballester A-R, Sudarmonowati E, Bino RJ, Bovy AG (2011) Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry 72:1358–1370CrossRefGoogle Scholar
  77. Wahyuni Y, Ballester A-R, Tikunov Y, de Vos RCH, Pelgom KTB, Maharijaya A, Sudarmonowati E, Bino RJ, Bovy AG (2013) Metabolomics and other molecular marker analysis to explore pepper (Capsicum sp.) biodiversity. Metabolomics 9:130–144CrossRefGoogle Scholar
  78. Weber N, Ismail A, Gorwa-Grauslund M, Carlquist M (2014) Biocatalytic potential of vanillin aminotransferase from Capsicum chinense. BMC Biotechnol 14:25CrossRefGoogle Scholar
  79. Zhang Z-X, Zhao S-N, Liu G-F, Huang Z-M, Cao Z-M, Cheng S-H, Lin S-S (2016) Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper. Sci Rep 6:3412Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad IrapuatoIrapuatoMexico

Personalised recommendations