Skip to main content
Log in

Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Seed germination rate and oil content can be regulated at theGDSL transcriptional level by eitherAtGDSL1 orBnGDSL1 inB. napus.

Abstract

Gly-Asp-Ser-Leu (GDSL)-motif lipases represent an important subfamily of lipolytic enzymes, which play important roles in lipid metabolism, seed development, abiotic stress, and pathogen defense. In the present study, two closely related GDSL-motif lipases, Brassica napus GDSL1 and Arabidopsis thaliana GDSL1, were characterized as functioning in regulating germination rate and seed oil content in B. napus. AtGDSL1 and BnGDSL1 overexpression lines showed an increased seed germination rate and improved seedling establishment compared with wild type. Meanwhile, the constitutive overexpression of AtGDSL1 and BnGDSL1 promoted lipid catabolism and decreased the seed oil content. While RNAi-mediated suppression of BnGDSL1 (Bngdsl1) in B. napus improved the seed oil content and decreased seed germination rate. Moreover, the Bngdsl1 transgenic seeds showed changes in the fatty acid (FA) composition, featuring an increase in C18:1 and a decrease in C18:2 and C18:3. The transcriptional levels of six related core enzymes involved in FA mobilization were all elevated in the AtGDSL1 and BnGDSL1 overexpression lines, but strongly suppressed in the Bngdsl1 transgenic line. These results suggest that improving the seed germination and seed oil content in B. napus could be achieved by regulating the GDSL transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad A, Bhattacharya A, McDonald RA et al (2011) Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Proc Natl Acad Sci USA 108:18966–18971

    Article  PubMed  Google Scholar 

  • Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552

    Article  CAS  Google Scholar 

  • Al-Taweel K, Fernando WG, Brûlé-Babel AL (2014) Transcriptome profiling of wheat differentially expressed genes exposed to different chemotypes of Fusarium graminearum. Theor Appl Genet 127:1703–1718

    Article  CAS  PubMed  Google Scholar 

  • BäUmlein H, Boerjan W, Nagy I, Bassfüner R, Van Montagu M, Inzé D, Wobus U (1991) A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Mol Genl Genet 225:459–467

    Article  Google Scholar 

  • Bradbeer JW (1988) Seed dormancy and germination. Springer, New York

    Book  Google Scholar 

  • Brick DJ, Brumlik MJ, Buckley JT, Cao JX, Davies PC, Misra S, Tranbarger TJ. Upton C (1995) A new family of lipolytic plant enzymes with members in rice, Arabidopsis and maize. FEBS Lett 377:475–480

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Du X, Zhu Y, Wang Z, Hua S, Li Z, Guo W, Zhang G, Peng J, Jiang L (2012) Seed fatty acid reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ 35:2155–2169

    Article  CAS  PubMed  Google Scholar 

  • Chepyshko H, Lai CP, Huang LM, Liu JH, Shaw JF (2012) Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC Genom 13:309

    Article  CAS  Google Scholar 

  • Chia TY, Pike MJ, Rawsthorne S (2005) Storage oil breakdown during embryo development of Brassica napus (L.). J Exp Bot 5:1285–1296

    Article  CAS  Google Scholar 

  • Clauss K, von Roepenack-Lahaye E, Böttcher C et al (2011) Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism. Plant Physiol 155:1127–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz Castillo M, Martinez C, Buchala A, Metraux JP, Leon J (2004) Gene-specific involvement of beta-oxidation in wound-activated responses in Arabidopsis. Plant Physiol 135:85–94

    Article  CAS  PubMed  Google Scholar 

  • Dave A, Hernández ML, He Z, Andriotis VM, Vaistij FE, Larson TR, Graham IA (2011) 12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant cell 23:583–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Yang G, Cao J, Zhou Y, Yang R (2016)) Molecular cloning and functional characterization of a DNA damage-inducible (DDI) gene in Arabidopsis. Physiol Mol Plant Pathol 94:126–133

    Article  CAS  Google Scholar 

  • Eastmond PJ, Graham IA (2001) Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci 6:72–78

    Article  CAS  PubMed  Google Scholar 

  • El-Kouhen K, Blangy S, Ortiz E, Gardies AM, Ferte N, Arondel V (2005) Identification and characterization of a triacylglycerol lipase in Arabidopsis homologous to mammalian acid lipases. FEBS Lett 579:6067–6073

    Article  CAS  PubMed  Google Scholar 

  • Ellinger D, Stingl N, Kubigsteltig II, Bals T, Juenger M, Pollmann S, Berger S, Schuenemann D, Mueller MJ (2010) DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. Plant Physiol 153:114–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finch-Savage WE, Clay HA, Lynn JR, Morris K (2010) Towards a genetic understanding of seed vigour in small-seeded crops using natural variation in Brassica oleracea. Plant Sci 179:582–589

    Article  CAS  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly AA, Quettier AL, Shaw E, Eastmond PJ (2011) Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol 157:866–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly AA, Shaw E, Powers SJ, Kurup S, Eastmond PJ (2013) Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotechnol J 11:355–361

    Article  CAS  PubMed  Google Scholar 

  • Knauer S, Holt AL, Rubio-Somoza I et al (2013) A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24:125–132

    Article  CAS  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  CAS  PubMed  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F et al (2010) Acyl-lipid metabolism. Arabidopsis Book 8:e0133

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling H, Zhao J, Zuo K, Qiu C, Yao H, Qin J, Sun X, Tang K (2006) Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L. J Biochem Mol Biol 39:297

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mu J, Tan H, Zheng Q et al (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:10421054

    Article  CAS  Google Scholar 

  • Nesi N, Delourme R, Bregeon M, Falentin C, Renard M (2008) Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biol 331:763–771

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006a) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penfield S, Pinfield-Wells HM, Graham IA (2006b) Storage reserve mobilisation and seedling establishment in Arabidopsis. Arabidopsis Book 4:e0100

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinfield-Wells H, Rylott EL, Gilday AD, Graham S, Job K, Larson TR, Graham IA (2005) Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J 43:861–872

    Article  CAS  PubMed  Google Scholar 

  • Quettier AL, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem 47:485–490

    Article  CAS  PubMed  Google Scholar 

  • Rombolá-Caldentey B, Rueda-Romero P, Iglesias-Fernández R, Carbonero P, Oñate-Sánchez L (2014) Arabidopsis DELLA and two HD-ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis-element. Plant Cell 26:2905–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis-structure, function, regulation. Phytochemistry 70:1532–1538

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Koo AJ, Howe GA (2007) Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol 143:812–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, Nishimura M, Hara-Nishimura I (2010) Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol 51:123–131

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Yang X, Zhang F et al (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol 156:1577–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20:178–179

    Article  CAS  Google Scholar 

  • van Erp H, Kelly AA, Menard G, Eastmond PJ (2014) Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol 165:30–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H (2004) Strategy on the mid and long-term development of rapeseed variety improvement in China. Chin J Oil Crop Sci 26:98–101

    Google Scholar 

  • Wang H (2010) Review and future development of rapeseed industry in China. Chin J Oil Crop Sci 2:023

    Google Scholar 

  • Wang WC, Menon G, Hansen G (2003) Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep 22:274–281

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, Tan X (2014) Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol Plant Pathol 15:677–689

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Lu YH, Song M, Wang Y, Xu W, Wu L, Wang H, Ma Z (2015) Overexpression of a Triticum aestivum calreticulin gene TaCRT1 improves salinity tolerance in tobacco. PLoS One 10:e0140591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFD0101904 and 2016YFD0100305) and the National Natural Science Foundation of China (31471527 and 31271760).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Li Tan.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Communicated by Hiroyasu Ebinuma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29857 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, LN., Guo, XJ., Li, M. et al. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Plant Cell Rep 38, 243–253 (2019). https://doi.org/10.1007/s00299-018-2365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2365-7

Keywords

Navigation