Plant Cell Reports

, Volume 37, Issue 5, pp 689–709 | Cite as

Cryobiotechnology of apple (Malus spp.): development, progress and future prospects

Review

Abstract

Key message

Cryopreservation provides valuable genes for further breeding of elite cultivars, and cryotherapy improves the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry.

Abstract

Apple (Malus spp.) is one of the most economically important temperate fruit crops. Wild Malus genetic resources and existing cultivars provide valuable genes for breeding new elite cultivars and rootstocks through traditional and biotechnological breeding programs. These valuable genes include those resistant to abiotic factors such as drought and salinity, and to biotic factors such as fungi, bacteria and aphids. Over the last three decades, great progress has been made in apple cryobiology, making Malus one of the most extensively studied plant genera with respect to cryopreservation. Explants such as pollen, seeds, in vivo dormant buds, and in vitro shoot tips have all been successfully cryopreserved, and large Malus cryobanks have been established. Cryotherapy has been used for virus eradication, to obtain virus-free apple plants. Cryopreservation provided valuable genes for further breeding of elite cultivars, and cryotherapy improved the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry. This review provides updated and comprehensive information on the development and progress of apple cryopreservation and cryotherapy. Future research will reveal new applications and uses for apple cryopreservation and cryotherapy.

Keywords

Apple Breeding Conservation Cryopreservation Cryotherapy Dormant buds Shoot tips Seeds Malus Vitrification 

Abbreviations

AD

Apical dome

ALCSV

Apple leaf chlorotic spot virus

ApMV

Apple mosaic virus

ASGV

Apple stem grooving virus

ASPV

Apple stem pitting virus

BA

N6-benzyladenine

DMSO

Dimethyl sulfoxide

FWB

Fresh weight basis

GA3

Gibberellic acid 3

IBA

Indole-3-butyric acid

ISSR

Inter-simple sequence repeat

JKI

Julius Kühn Institute

LN

Liquid nitrogen

LNV

Liquid nitrogen vapor

LP

Leaf primordium

MS

Murashige and Skoog

NLGRP

National Laboratory for Genetic Resources Preservation

PVS

Plant vitrification solution

PVS2

Plant vitrification solution 2

PVS3

Plant vitrification solution 3

RAPD

Random amplified polymorphic DNA

RBDV

Raspberry bushy dwarf virus

RH

Relative humidity

TTC

2, 3, 5-triphenyl tetrazolium chloride solution

USDA

United States Department of Agriculture

Notes

Acknowledgements

The authors appreciate the use of published data from Monika Höfer, Julius Kühn Institute, Dresden, Germany. They also thank Jean Carlos Bettoni for providing an internal review of the manuscript. Financial support was received from the Department of Science and Technology of Shaanxi Province, China (2014KTCL02-05) (Q. Wang) and USDA Agricultural Research Service in-house appropriated funds Project Number 3012-21000-014-00D (G. Volk).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest declared.

References

  1. Afunian MR, Goodwin PH, Hunter DM (2004) Linkage of Vfa4 in Malus × domestica and Malus floribunda with Vf resistance to the apple scab pathogen Venturia inaequalis. Plant Pathol 53:461–467CrossRefGoogle Scholar
  2. Akihama T, Omura M (1986) Preservation of fruit tree pollen. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 1: trees. Springer, Berlin, pp 101–111Google Scholar
  3. Bakke AL, Richey HW, Reeves K (1926) Germination and storage of apple seeds. Agri Exp Station Iowa State College of Agriculture and Mechanic Arts. Research Bulletin No. 97. Ames, Iowa, pp 243–255Google Scholar
  4. Baldo A, Norelli JL, Farrell RE Jr, Bassett CL, Aldwinckle HS, Malnoy M (2010) Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora. BMC Plant Biol.  https://doi.org/10.1186/1471-2229-10-1 PubMedPubMedCentralGoogle Scholar
  5. Benelli C, De Carlo A, Engelmann F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol Adv 31:175–185PubMedCrossRefGoogle Scholar
  6. Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit Rev Plant Sci 27:141–219CrossRefGoogle Scholar
  7. Bilavčík A, Zámečník J, Grospietsch M, Faltus M, Jadrná P (2012) Dormancy development during cold hardening of in vitro cultured Malus domestica, Borkh. plants in relation to their frost resistance and cryotolerance. Trees 26:1181–1192CrossRefGoogle Scholar
  8. Bilavčík A, Zámečník J, Faltus M (2015) Cryotolerance of apple tree bud is independent of endodormancy. Front Plant Sci 6:695.  https://doi.org/10.3389/fpls.2015.00695 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Burritt DJ (2008) Efficient cryopreservation of adventitious shoots of Begonia × erythrophylla using encapsulation–dehydration requires pretreatment with both ABA and proline. Plant Cell Tiss Org Cult 95:209–215CrossRefGoogle Scholar
  10. Chakrabarty D, Hahn EJ, Yoon YJ, Paek KY (2003) Micropropagation of apple rootstock M.9 EMLA using bioreactor. J Hort Sci Biotechnol 78:605–609CrossRefGoogle Scholar
  11. Condello E, Caboni E, Andrè E, Piette B, Druart P, Swennen R, Panis B (2011) Cryopreservation of apple in vitro axillary buds using droplet-vitrification. CryoLetters 32:175–185PubMedGoogle Scholar
  12. Crosby JA, Janick J, Pecknold PC, Korban SS, O’Connor PA, Ries SM, Goffreda J, Voordeckers A (1992) Breeding apples for scab resistance: 1945–1990. Fruit Var J 46:145–166Google Scholar
  13. Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipids bilayers and proteins by sugars. Biochem J 242:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dobránszki J, Teixeira da Silva JA (2010) Micropropagation of apple—a review. Biotechnol Adv 28:462–488PubMedCrossRefGoogle Scholar
  15. Dobránszki J, Teixeira da Silva JA (2013) In vitro shoot regeneration from transverse thin cell layers of apple leaves in response to various factors. J Horti Sci Biotechnol 88:60–66CrossRefGoogle Scholar
  16. Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16CrossRefGoogle Scholar
  17. Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C (2013) A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC–NBS–LRR. Tree Genet Gen 9:237–251CrossRefGoogle Scholar
  18. Fahy GM, MacFarlande DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:413–426Google Scholar
  19. Faltus M, Bilavcik A, Zamecnik J, Domkarova J, Svoboda P (2007) Cryobanking of potato and hop germplasm in the Czech Republic. CryoLetters 29:86Google Scholar
  20. FAO (Food and Agriculture Organization of the United Nations) (2017) FAOSTAT Production Database. http://faostat.fao.org. Accessed 20 Oct 2017
  21. Feng C-H, Cui Z-H, Li B-Q, Chen L, Ma Y-L, Zhao Y-H, Wang Q-C (2013) Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Cell Tiss Org Cult 112:369–378CrossRefGoogle Scholar
  22. Feng C-H, Li B-Q, Hu L-Y, Wang M-R, Wang Q-C (2014) A comparison of two cryogenic protocols in cryopreservation of apple shoot tips. Acta Hort 1039:161–172CrossRefGoogle Scholar
  23. Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978.  https://doi.org/10.3389/fpls.2015.00978 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Flachowsky H, Peil A, Rollins J, Hanke MV (2008) Improved fire blight resistance in transgenic apple lines by constitutive overexpression of the mbr4 gene of Malus baccata. Acta Hortic 793:287–291CrossRefGoogle Scholar
  25. Forni C, Braglia R, Beninati S, Lentini A, Ronci M, Urbani A, Provenzano B, Frattarelli A, Tabolacci C, Damiano C (2010) Polyamine concentration, transglutaninase activity and changes in protein synthesis during cryopreservation of shoot tips of apple variety Annurca. CryoLetters 31:413–425PubMedGoogle Scholar
  26. Forsline PL, McFerson JR, Towill LE (1998a) Development of base and active collections of Malus germplasm with cryopreserved dormant buds. Acta Hortic 484:75–78CrossRefGoogle Scholar
  27. Forsline PL, Towill LE, Waddell JW, Stushnoff C, Lamboy WF, McFerson JR (1998b) Recovery and longevity of cryopreserved dormant apple buds. J Am Soc Hortic Sci 123:365–370Google Scholar
  28. Forsline PL, Aldwinckle HS, Dickson EE, Luby JJ, Hokanson SC (2010) Collection, maintenance, characterization and utilization of wild apples of central Asia. Hortic Rev 29:1–58Google Scholar
  29. Gardiner SE, Norelli JL, de Silva N, Fazio G, Peil A, Malnoy M, Horner M, Bowatte D, Carlisle C, Wiedow C, Wan Y, Bassett CL, Baldo AM, Celton J-M, Richter K, Aldwinckle HS, Bus VGM (2012) Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions. BMC Genet 13:25.  https://doi.org/10.1186/1471-2156-13-25 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503CrossRefGoogle Scholar
  31. Gupta S, Rana JC (2015) Cryopreservation of apple (Malus spp.) winter buds. Ind J Hortic 72:553CrossRefGoogle Scholar
  32. Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709PubMedCrossRefGoogle Scholar
  33. Hadidi A, Barba M (2011) Economic impact of pome and stone fruit viruses and viroids. In: Hadidi A, Barba M, Candresse TH, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. APS, St. Paul, pp 1–7Google Scholar
  34. Halmagyi A, Deliu C, Isac V (2010a) Cryopreservation of Malus cultivars: comparison of two droplet protocols. Sci Hortic 124:387–392CrossRefGoogle Scholar
  35. Halmagyi A, Vălimăreanu S, Coste A, Deliu C, Isac V (2010b) Cryopreservation of Malus shoot tips and subsequent plant regeneration. Romanian Biotechnol Lett 15:79–85Google Scholar
  36. Hao YJ, Deng XX (2003) Genetically stable regeneration of apple plants from slow growth. Plant Cell Tiss Org Cult 72:253–260CrossRefGoogle Scholar
  37. Hao YJ, Liu QL, Deng XX (2001) Effect of cryopreservation on apple genetic resources at morphological, chromosomal, and molecular levels. Cryobiology 43:46–53PubMedCrossRefGoogle Scholar
  38. Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22PubMedGoogle Scholar
  39. Hawkes JG, Maxted N, Ford-Lloyd BV (2000) Field gene banks, botanic gardens, in vitro, DNA and pollen conservation. In: The ex situ conservation of plant genetic resources. Springer, Dordrecht, pp 92–107CrossRefGoogle Scholar
  40. Hegedus A (2006) Review of the self-incompatibility in apple (Malus × domestica Borkh. Syn. Malus pumila Mill.). Int J Hortic Sci 12:31–36Google Scholar
  41. Höfer M (2015) Cryopreservation of winter-dormant apple buds: establishment of a duplicate collection of Malus, germplasm. Plant Cell Tiss Org Cult 121:647–656CrossRefGoogle Scholar
  42. Horner MB, Richter K, Peil A, Bus VGM (2015) Comparison of fire blight resistance screening protocols in two international breeding programmes. N Zeal Plant Prot 68:275–281Google Scholar
  43. Jenderek MM, Forsline P, Postman J, Stove E, Ellis D (2011) Effect of geographical location, year, and cultivar on survival of Malus sp. dormant buds stored in vapors of liquid nitrogen. HortScience 46:1230–1234Google Scholar
  44. Jiang A, Zhang SW, Sun YW, Chu XR, Zhao Y, Xu XF, Kong J (2010) Expression analysis of WRKY family in response to salt stress in Malus zumi Mats. Acta Hortic Sin 37(8):1213–1219Google Scholar
  45. Jiang Y, Li L, Zhao Y (2013) Cloning and expression analysis of salt stress MzSTO gene from Malus zumi Mats. J China Agric Univ 18(1):88–93Google Scholar
  46. Jurick WM, Janisiewicz WJ, Saftner RA, Vico I, Gaskins VL, Park E, Forsline PL, Fazio G, Conway WS (2011) Identification of wild apple germplasm (Malus spp.) accessions with resistance to the postharvest decay pathogens Penicillium expansum and Colletotrichum acutatum. Plant Breed 13:2Google Scholar
  47. Katano M, Ishihara A, Sakai A (1983) Survival of dormant apple shoot tips after immersion in liquid nitrogen. HortScience 18:707–708Google Scholar
  48. Keller ERJ (2007) Cryopreservation for maintenance of plant germplasm in Germany. Adv Hort Sci 21:228–231Google Scholar
  49. King GJ, Tartarini S, Brown L, Gennari F, Sansavini S (1999) Introgression of the Vf source of scab resistance and distribution of linked marker alleles within the Malus gene pool. Theor Appl Genet 99:1039–1046CrossRefGoogle Scholar
  50. Knight RL, Alston FH (2011) Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Genome 10:294–298Google Scholar
  51. Komjanc M, Festi S, Rizzotti L, Cattivelli L, Cervone F, De Lorenzo GA (1999) leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus × domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Mol Biol 40:945–957PubMedCrossRefGoogle Scholar
  52. Kost ThD, Gessler C, Jänsch M, Flachowsky H, Patocchi A, Broggini GAL (2015) Development of the first cisgenic apple with increased resistance to fire blight. PLoS One.  https://doi.org/10.1371/journal.pone.0143980 Google Scholar
  53. Kovalchuk I, Lyudvikova G, Volgina M, Reed BM (2009) Medium, container and genotype all influence in vitro cold storage of apple germplasm. Plant Cell Tiss Org Cult 96:127–136CrossRefGoogle Scholar
  54. Kovalchuk I, Turdiev T, Mukhitdinova Z, Frolov S, Reed BM, Kairova G (2014) New techniques for rapid cryopreservation of dormant vegetative buds. Acta Hortic 1039:137–146CrossRefGoogle Scholar
  55. Kuo CC, Lineberger BD (1985) Survival of in vitro culture tissues of Jonathan apples exposed to − 196 °C. HortScience 20:764–767Google Scholar
  56. Kushnarenko SV, Romadanova NV, Reed BM (2009) Cold acclimation improves regrowth of cryopreserved apple shoot tips. CryoLetters 30:47–54PubMedGoogle Scholar
  57. Kushnarenko S, Salnikov E, Nurtazin M, Mukhitdinova Z, Rakhimbaev I, Reed BM (2010a) Characterization and cryopreservation of Malus sieversii seeds. Asian Aust J Plant Sci Biotechnol 4:5–9Google Scholar
  58. Kushnarenko S, Kovalchuk I, Mukhitdinova Z, Rakhimova E, Reed BM (2010b) Ultrastructure study of apple meristem cells during cryopreservation. Asian Aust J Plant Sci Biotechnol 4:10–20Google Scholar
  59. Laimer M, Barba M (2011) Elimination of systemic pathogens by thermotherapy, tissue culture, or in vitro micrografting. In: Hadidi A, Barba M, Candresse Th, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. APS, St. Paul, pp 389–393Google Scholar
  60. Lambardi M, Benelli C, De Carlo A, Previati A (2009) Advances in the cryopreservation of fruit plant germplasm at the CNR-IVALSA Institute of Florence. Acta Hort 839:237–244CrossRefGoogle Scholar
  61. Lambardi M, Benelli C, De Carlo A, Previati A, Ozudogru EA, Ellis D (2011) Cryopreservation of ancient apple cultivars of Veneto: a comparison between PVS2-vitrification and dormant-bud techniques. Acta Hortic 908:191–198CrossRefGoogle Scholar
  62. Li QT, Zhao Y, Zhou QY, Huang LF, Jiang YZ, Chen H, Kong J (2013) A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi. Intern J Mol Sci 14:21053–21070CrossRefGoogle Scholar
  63. Li B-Q, Feng C-H, Hu L-Y, Wang M-R, Chen L, Wang Q-C (2014) Shoot regeneration and cryopreservation of shoot tips of apple (Malus) by encapsulation–dehydration. In Vitro Cell Dev Biol Plant 50:357–368CrossRefGoogle Scholar
  64. Li B-Q, Feng C-H, Wang M-R, Hu L-Y, Volk GM, Wang Q-C (2015) Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. J Biotechnol 214:182–191PubMedCrossRefGoogle Scholar
  65. Li B-Q, Feng C-H, Hu L-Y, Wang M-R, Wang Q-C (2016) Shoot tip culture and cryopreservation for eradication of Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV) from apple rootstocks ‘M9’ and ‘M26’. Ann Appl Biol 168:142–150CrossRefGoogle Scholar
  66. Liu Y, Wang X, Liu L (2004) Analysis of genetic variation in surviving apple shoots following cryopreservation by vitrification. Plant Sci 166:677–685CrossRefGoogle Scholar
  67. Liu YG, Liu LX, Wang L, Gao AY (2008) Determination of genetic stability in surviving apple shoots following cryopreservation by vitrification. CryoLetters 29:7–14PubMedGoogle Scholar
  68. Lundergan C, Janick J (1979) Low temperature storage of in vitro apple shoots. HortScience 14:514Google Scholar
  69. Magyar-Tábori K, Dobránszki J, Teixeira da Silva JA, Bulley SM, Hudák I (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tiss Org Cult 101:251–267CrossRefGoogle Scholar
  70. Malnoy M, Borejszawysocka EE, Aldwinckle HS, Jin QL, He SY (2006) Transgenic apple lines over-expressing the apple gene MpNPR1 have increased resistance to fire blight. Acta Hortic 704:521–526CrossRefGoogle Scholar
  71. Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Inter 20:1568–1580CrossRefGoogle Scholar
  72. Markussen T, Kruger J, Schmidt H, Duemann F (1995) Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pli from Malus robusta in cultivated apple. Plant Breed 114:530–534CrossRefGoogle Scholar
  73. Martínez-Gómez P, Gradziel TM, Ortega E, Dicenta F (2002) Low temperature storage of almond pollen. HortScience 37:691–692Google Scholar
  74. Matsumoto T, Sakai A, Yamada K (1995) Cryopreservation of in vitro grown apical meristems of lily by vitrification. Plant Cell Tiss Org Cult 41:237–241CrossRefGoogle Scholar
  75. Michalak M, Plitta-Michalak BP, Chmielarz P (2015) Desiccation tolerance and cryopreservation of wild apple (Malus sylvestris) seeds. Seed Sci Technol 43:480–491CrossRefGoogle Scholar
  76. Momol MT, Forsline PL, Aldwinckle HS, Lamboy WF (1999) Fire blight resistance and horticultural evaluation of wild Malus populations from Central Asia. Acta Hortic 489:229–234CrossRefGoogle Scholar
  77. Moriya S, Iwanami H, Takahashi S, Kotoda N, Suzaki K, Yamamoto T, Abe K (2010) Genetic mapping of the crown gall resistance gene of the wild apple Malus sieboldii. Tree Genet Genom 6:195–203CrossRefGoogle Scholar
  78. Mornya PMP, Cheng FY (2013) Seasonal changes in endogenous hormone and sugar contents during bud dormancy in tree peony. J Appl Hortic 15:159–165Google Scholar
  79. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  80. Niino T, Sakai A (1992) Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87:199–206CrossRefGoogle Scholar
  81. Niino T, Sakai A, Yakuwa H, Nojiri K (1992) Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tiss Org Cult 28:261–266CrossRefGoogle Scholar
  82. Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73CrossRefGoogle Scholar
  83. Nougarède A, Silveira CE, Rondet P (1996) In nature dormant buds and in vitro dormant-like buds of Fraxinus excelsior L. Protoplasma 190:16–24CrossRefGoogle Scholar
  84. Oka S, Yakuwa H, Sate K, Niino T (1991) Survival and shoot formation in vitro of pear winter buds cryopreserved in liquid nitrogen. HortScience 26:65–66Google Scholar
  85. Pagliarani G, Dapena E, Miñarro M, Denancé C, Lespinasse Y, Rat-Morris E, Troggio M, Durel CE, Tartarini S (2016) Fine mapping of the rosy apple aphid resistance locus dp-fl, on linkage group 8 of the apple cultivar ‘florina’. Tree Genet Genom 12:1–12CrossRefGoogle Scholar
  86. Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55CrossRefGoogle Scholar
  87. Parfitt DE, Almehdi AA (1984) Liquid nitrogen storage of pollen from five cultivated Prunus species. HortScience 19:69–70Google Scholar
  88. Paul H, Daigny G, Sangwannorreel BS (2000) Cryopreservation of apple (Malus × domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19:768–774CrossRefGoogle Scholar
  89. Peil A, Garcia-Libreros T, Richter K, Trognitz FC, Trognitz B, Hanke M-V, Flachowsky H (2007) Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breed 126:470–475CrossRefGoogle Scholar
  90. Pereira-Lorenzo S, Ramos-Cabrer AM, Fischer M (2009) Breeding Apple (Malus × domestica Borkh). In: Jain SM, Priyadarshan PM (eds), Breeding plantation tree crops: temperate species. Springer Science + Business Media, Berlin, pp 35–81Google Scholar
  91. Perveen A, Khan SA (2008) Maintenance of pollen germination capacity of Malus pumila L., (Rosaceae). Pak J Bot 40:963–966Google Scholar
  92. Poisson AS, Berthelot P, Bras CL, Grapin A, Vergne E, Chevreau E (2016) A droplet-vitrification protocol enabled cryopreservation of doubled haploid explants of Malus × domestica, Borkh. ‘Golden delicious’. Sci Hort 209:187–191CrossRefGoogle Scholar
  93. Pritchard HW, Nadarajan J (2008) Cryopreservation of orthodox (desiccation tolerant) seeds. In: Reed BM (ed) Plant cryopreservation—a practical guide. Springer Science + Business Media, Berlin, pp 485–502CrossRefGoogle Scholar
  94. Rajasekharan PE, Ganeshan S (1994) Freeze preservation of rose pollen in liquid nitrogen: feasibility, viability and fertility status after long-term storage. J Hortic Sci 69:565–569CrossRefGoogle Scholar
  95. Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood D, Reeves PA, Forsline PL (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genom 5:339–347CrossRefGoogle Scholar
  96. Roche P, Van Arkel G, Van Heusden AW (1997) A specific PCR assay based on an RFLP marker closely linked to the Sd1 gene for resistance to biotypes 1 and 2 of the rosy leaf curling aphid in apple. Plant Breed 116:567–572CrossRefGoogle Scholar
  97. Romadanova NV, Mishustina SA, Gritsenko DA, Omasheva MY, Galiakparov NN, Reed BM, Kushnarenko SV (2016) Cryotherapy as a method for reducing the virus infection of apples (Malus sp.). CryoLetters 37:1–6PubMedGoogle Scholar
  98. Sakai A, Engelmann F (2007) Vitrification, encapsulation–vitrification and droplet-vitrification: a review. CryoLetters 28:151–172PubMedGoogle Scholar
  99. Sakai A, Nishiyama Y (1978) Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. HortScience 13:223–227Google Scholar
  100. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33PubMedCrossRefGoogle Scholar
  101. Seufferheld MJ, Stushnoff C, Forsline PL, Terrazas GH (1999) Cryopreservation of cold-tender apple germplasm. J Am Soc Hortic Sci 124:6Google Scholar
  102. Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechn Adv 31:186–207CrossRefGoogle Scholar
  103. Stushnoff C (1987) Cryopreservation of apple genetic resources. Can J Plant Sci 67:1151–1154CrossRefGoogle Scholar
  104. Stushnoff C (2014) Cryophysiology of woody plant dormant buds. Acta Hortic 1039:63–72CrossRefGoogle Scholar
  105. Stushnoff C, Seufferheld M (1995) Cryopreservation of Apple (Malus species) genetic resources. In: Bajaj VPS (ed) Cryopreservation of plant germplasm I, biotechnology in agriculture and forestry. Springer, Berlin, pp 87–101CrossRefGoogle Scholar
  106. Stushnoff C, Vertucci CW, Towill LE (1988) Assessment of water status by differential scanning calorimetry for cryopreservation of dormant buds. In: Proc 17th N Am Thermal Analysis Soc Conf. Oct 9–12, Lake Buena Vista, FL. pp 246–251Google Scholar
  107. Sun X, Wang P, Jia X, Huo L, Che R, Ma F (2017) Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12794 Google Scholar
  108. Thomsen KA, Eriksen EN (2006) Effect of temperatures during seed development and pretreatment on seed dormancy of Malus sargentii and M. sieboldii. Seed Sci Technol 34:215–220CrossRefGoogle Scholar
  109. Towill LE, Bonnart R (2005) Cryopreservation of apple using non-desiccated sections from winter-collected scions. CryoLetters 26:323–332PubMedGoogle Scholar
  110. Towill LE, Ellis D (2008) Cryopreservation of dormant buds. In: Reed BM (ed), Plant cryopreservation—a practical guide. Springer, Berlin, pp 421–442CrossRefGoogle Scholar
  111. Towill LE, Roos EE (1989) Techniques for preserving of plant germplasm. In: Knutson L, Stoner AK (eds) Biotic diversity and germplasm preservation, global imperatives. Kluwer Academic, Amsterdam, pp 379–403CrossRefGoogle Scholar
  112. Towill LE, Forsline PL, Walters C, Waddell JW, Laufmann J (2004) Cryopreservation of Malus germplasm using a winter vegetative bud method: results from 1915 accessions. CryoLetters 25:323–334PubMedGoogle Scholar
  113. Turechek WW, Carroll JE, Rosenberger DA (2014) Powdery mildew of apple. NY State Integrated Pest Management. https://ecommons.cornell.edu/handle/1813/43120. Accessed 10 Jan 2018
  114. Tyler N, Stushnoff C (1988a) Dehydration of dormant apple buds at different stages of cold acclimation to induce cryopreservability in different cultivars. Can J Plant Sci 68:1169–1176CrossRefGoogle Scholar
  115. Tyler NJ, Stushnoff C (1988b) The effects of prefreezing and controlled dehydration on cryopreservation of dormant vegetative apple buds. Can J Plant Sci 68:1163–1167CrossRefGoogle Scholar
  116. Tyler N, Stushnoff C, Gusta LV (1988) Freezing of water in dormant vegetative apple buds in relation to cryopreservation. Plant Physiol 87:201–205PubMedPubMedCentralCrossRefGoogle Scholar
  117. Vertucci CW, Stushnoff C (1992) The state of water in acclimating vegetative buds from Malus and Amelanchier and its relationship to winter hardiness. Physiol Plant 86:503–577CrossRefGoogle Scholar
  118. Vieira RL, Silva ALD, Zaffari GR, Steinmacher DA, Fraga HPDF., Guerra MP (2015) Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiol Plant 37:1–11CrossRefGoogle Scholar
  119. Vogiatzi C, Grout BWW, Toldam-Andersen TB, Green J (2011a) Cryopreservation of dormant buds from temperate fruit crops to optimize working collection resources. Acta Hortic 908:477–482CrossRefGoogle Scholar
  120. Vogiatzi C, Grout BWW, Wetten A, Toldam-Andersen BT (2011b) Cryopreservation of winter-dormant apple buds: I—variation in recovery with cultivar and winter conditions. CryoLetters 32:358–366PubMedGoogle Scholar
  121. Vogiatzi C, Grout BWW, Wetten A, Toldam-Andersen BT (2011c) Cryopreservation of winter-dormant apple buds: II—tissue water status after desiccation at − 4 °C and before further cooling. CryoLetters 32:367–376PubMedGoogle Scholar
  122. Vogiatzi C, Grout BWW, Wetten A (2012) Cryopreservation of winter-dormant apple: III—bud water status and survival after cooling to − 30 °C and during recovery from cryopreservation. CryoLetters 33:160–168Google Scholar
  123. Volk GM (2011) Collecting pollen for genetic resources conservation. In: Guarino L, Ramanatha VR, Goldberg E (eds) Collecting plant genetic diversity: technical guidelines 2011 update. Bioversity International, Rome, pp 1–10Google Scholar
  124. Volk GM, Bramel P (2017) A strategy to conserve worldwide apple genetic resources: survey results. Acta Hortic 1172:99–105CrossRefGoogle Scholar
  125. Volk GM, Richards CM, Reilley AA, Henk AD, Forsline PL, Aldwinckle HS (2005) Ex situ conservation of vegetatively-propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hortic Sci 130:203–210Google Scholar
  126. Volk GM, Richards CM, Forsline PL (2010) A comprehensive approach toward conserving Malus germplasm. Acta Hortic 859:177–182CrossRefGoogle Scholar
  127. Volk GM, Chao CT, Norelli J, Brown SK, Fazio G, Peace C, McFerson J, Zhong GY, Bretting P (2015) The vulnerability of US apple (Malus) genetic resources. Gene Res Crop Evol 62:765–794CrossRefGoogle Scholar
  128. Volk GM, Henk AD, Forsline PL, Szewc-McFadden AK, Fazio G, Aldwinckle H, Richards CM (2017a) Seeds capture the diversity of genetic resource collections of Malus sieversii maintained in an orchard. Gene Res Crop Evol 64:1513–1528CrossRefGoogle Scholar
  129. Volk GM, Henk AD, Jenderek M, Richards CM (2017b) Probabilistic viability calculations for cryopreserving vegetatively propagated collections in genebanks. Gene Res Crop Evol 64:1613–1622CrossRefGoogle Scholar
  130. Volk GM, Jenderek M, Chao CT (2017c) Prioritization of Malus accessions for collection cryopreservation at the USDA-ARS National Center for Genetic Resources Preservation. Acta Hortic 1172:267–272CrossRefGoogle Scholar
  131. Vollmer R, Villagaray R, Egusquiza V, Espirilla J, Garcia M, Torres A, Rojas E, Panta A, Barkley NA, Ellis D (2016) The potato cryobank at the International Potato Center (CIP): a model for long-term conservation of clonal plant genetic resources collections of the future. CryoLetters 37:318–329PubMedGoogle Scholar
  132. Vollmer R, Villagaray R, Cárdenas J, Castro M, Chávez O, Anglin NL, Ellis D (2017) A large-scale viability assessment of the potato cryobank at the International Potato Center (CIP). In Vitro Cell Dev Biol Plant 53:309–317PubMedPubMedCentralCrossRefGoogle Scholar
  133. Walters C, Richards CM, Volk GM Challenges of storing seed of wild species. In: Greene S, Williams K, Khoury C, Kantar MB, Marek L (eds) Valuable plants of North America: crop wild relatives and wild utilized species. Springer, Berlin (in press) Google Scholar
  134. Wang Q-C, Perl A (2006) Cryopreservation in floricultural crops. In: Teixeira da Silva, JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. Global Science Books, Ltd., UK, pp 523–539Google Scholar
  135. Wang Q-C, Valkonen JPT (2009) Cryotherapy of shoot tips: novel pathogen eradication method. Trend Plant Sci 14:119–122CrossRefGoogle Scholar
  136. Wang Q-C, Cuellar WJ, Rajamäki ML, Hiraka Y, Valkonen JPT (2008) Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Mol Plant Pathol 9:237–250PubMedCrossRefGoogle Scholar
  137. Wang Q-C, Panis B, Engelmann F, Lambardi M, Valkonen JPT (2009) Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Ann Appl Biol 154:351–363CrossRefGoogle Scholar
  138. Wang S, Liang D, Shi S, Ma F, Shu S, Wang R (2011a) Isolation and characterization of a novel drought responsive gene encoding a glycine-rich RNA-binding protein in Malus prunifolia (Willd.) Borkh. Plant Mol Biol Rep 29:125–134CrossRefGoogle Scholar
  139. Wang X, Wei J, Huang L, Kuang Z (2011b) Re-evaluation of pathogens causing Valsa canker on apple in China. Mycologia 103:317–324PubMedCrossRefGoogle Scholar
  140. Wang B, Wang R-R, Cui Z-H, Li J-W, Bi W-L, Li B-Q, Ozudogru EA, Volk GM, Wang Q-C (2014a) Potential applications of cryogenic technologies to plant genetic transformation and pathogen eradication. Biotechnol Adv 32:583–595PubMedCrossRefGoogle Scholar
  141. Wang B, Li J-W, Zhang ZB, Wang R-R, Ma Y-L, Blystad D-R, Keller ERJ, Wang Q-C (2014b) Three vitrification-based cryopreservation procedures cause different cryo-injuries to potato shoot tips while all maintain genetic integrity in regenerants. J Biotechnol 32:583–595Google Scholar
  142. Wang N, Wolf J, Zhang FS (2016) Towards sustainable intensification of apple production in China—yield gaps and nutrient use efficiency in apple farming systems. J Integ Agric 15:716–725CrossRefGoogle Scholar
  143. Wang N, Guo T, Sun X, Jia X, Wang P, Shao Y, Liang D, Gong X, Ma F (2017) Functions of two Malus hupehensis (Pamp.) Rehd. YTPs (MhYTP1 and MhYTP2) in biotic- and abiotic-stress responses. Plant Sci 261:18–27PubMedCrossRefGoogle Scholar
  144. Wu Y, Engelmann F, Zhao Y, Zhou M, Chen S (1999) Cryopreservation of apple shoot tips: importance of cryopreservation technique and of conditioning of donor plants. CryoLetters 20:121–130Google Scholar
  145. Wu Y, Zhao Y, Engelmann F, Zhou M, Zhang D, Chen S (2001) Cryopreservation of apple dormant buds and shoot tips. CryoLetters 22:375–380PubMedGoogle Scholar
  146. Würdig J, Flachowsky H, Saß A, Peil A, Hanke M-V (2015) Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Mol Breed 35:95.  https://doi.org/10.1007/s11032-015-0291-8 CrossRefGoogle Scholar
  147. Xu J, Li B, Liu Q, Shi Y, Peng J, Jia M, Liu Y (2014) Wide-scale pollen banking of ornamental plants through cryopreservation. CryoLetters 35:312–319PubMedGoogle Scholar
  148. Yang J, Xiu Y, Zhang Z (1995) Breeding of green delicious a tolerant to drought and cold resistant apple variety. Acta Hortic 403:78–80Google Scholar
  149. Yi JY, Lee GA, Chung JW, Lee YY, Kwak JG, Lee SY (2015) Morphological and genetic stability of dormant apple winter buds after cryopreservation. Kor J Plant Res 28:697–703CrossRefGoogle Scholar
  150. Yilmaz M (2008) Optimum germination temperature, dormancy, and viability of stored, non-dormant seeds of Malus trilobata (Poir.) C.K. Schneid. Seed Sci Technol 36:747–756CrossRefGoogle Scholar
  151. Yin Z-F, Zhao B, Bi W-L, Chen L, Wang Q-C (2013) Direct shoot regeneration from basal leaf segments of Lilium and assessment of genetic stability in regenerants by ISSR and AFLP markers. In Vitro Cell Dev Biol Plant 49:333–342CrossRefGoogle Scholar
  152. Yuan H, Zhao K, Lei H, Shen X, Liu Y, Liao X, Li T (2013) Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genom 14(1):297.  https://doi.org/10.1186/1471-2164-14-297 CrossRefGoogle Scholar
  153. Zhang JY, Qu SC, Qiao YS, Zhang Z, Guo ZR (2014) Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco. Mol Biol Rep 41:1553–1561PubMedCrossRefGoogle Scholar
  154. Zhao Y, Wu Y, Engelmann F, Zhou M, Chen S (1999a) Cryopreservation of apple in vitro shoot tips by the droplet freezing method. CryoLetters 20:109–112Google Scholar
  155. Zhao Y, Wu Y, Engelmann F, Zhou M, Zhang D, Chen S (1999b) Cryopreservation of apple shoot tips by encapsulation-dehydration: effect of preculture, dehydration and freezing procedures on shoot regeneration. CryoLetters 20:103–108Google Scholar
  156. Zhao T, Liang D, Wang P, Liu J, Ma F (2012) Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol Genet Genom 287:423–436CrossRefGoogle Scholar
  157. Zhao H, Han Q, Wang J, Gao X, Xiao CL, Liu J, Huang L (2013) Cytology of infection of apple leaves by Diplocarpon mali. Eur J Plant Pathol 136:41–49CrossRefGoogle Scholar
  158. Zhou ZQ (1999) The apple genetic resources in China: the wild species and their distributions, informative characteristics and utilization. Gene Res Crop Evol 46:599–609CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Stress Biology in Arid Region, College of HorticultureNorthwest Agriculture & Forestry UniversityYanglingPeople’s Republic of China
  2. 2.Kagawa-kenJapan
  3. 3.National Laboratory for Genetic Resources PreservationFort CollinsUSA

Personalised recommendations