Advertisement

DNA methyltransferase genes polymorphisms are associated with primary knee osteoarthritis: a matched case–control study

  • Antonio Miranda-DuarteEmail author
  • Verónica Marusa Borgonio-Cuadra
  • Norma Celia González-Huerta
  • Emma Xochitl Rojas-Toledo
  • Juan Francisco Ahumada-Pérez
  • Matvey Sosa-Arellano
  • Eugenio Morales-Hernández
  • Nonanzit Pérez-Hernández
  • José Manuel Rodríguez-Pérez
Observational Research
  • 45 Downloads

Abstract

DNA methylation is an epigenetic mechanism involved in the development of primary osteoarthritis (OA). The association between DNA methyltransferases (DNMTs) genes polymorphisms and diseases in which DNA methylation plays a role in their pathogenesis has been described (e.g., cancer); however, its relationship with OA has not been investigated. The aim of this study was to analyze the association between DNMT1, DNMT3A, and DNMT3B polymorphisms with radiologic primary knee OA in Mexican mestizo population. A matched case–control study was conducted (ratio, 1:1). Cases included 244 subjects with definite radiographic knee OA (grade ≥ 2). Controls were matched by age and gender and were subjects with no definite radiographic knee OA/normal (grade < 2). The DNMTs polymorphisms were genotyped by TaqMan allelic discrimination assays. Conditional logistic regression was carried out, and the genetic association was tested under co-dominant, dominant, and recessive inheritance models. Haplotypes for DNMT1 polymorphisms were constructed and their associations were also tested. The CC genotypes of rs2228611 and rs2228612 of DNMT1 were associated with a lower risk for primary knee OA under a co-dominant and a recessive model [OR (95% CI) 0.4 (0.2–0.8)/0.5 (0.3–0.8) and 0.3 (0.1–0.8)/0.3 (0.1–0.7), respectively]. The CT haplotype of DNMT1 polymorphisms was associated with a lower risk [OR (95% CI) 0.71 (0.51–0.97)]. The CC genotype of rs2424913 of DNMT3B was associated with an increased risk under a co-dominant and a dominant model [OR (95% CI) 3.0 (1.1–8.0), and 1.6 (1.1–2.4), respectively]. Our results show that DNMTs polymorphisms are associated with primary knee OA.

Keywords

Knee osteoarthritis DNA (cytosine-5-)-methyltransferase Genetic polymorphism Risk factors Matched case–control study Genetic association study 

Notes

Acknowledgements

The authors wish to thanks to the personnel of the Radiology Service for the invaluable support to assess the radiologic studies.

Author contributions

Concept, study design, data analysis, manuscript preparation, and writing: Antonio Miranda-Duarte, Verónica Marusa Brogonio-Cuadra, and Norma Celia González-Huerta; Data acquisition (study subject recruitment, clinical and radiologic evaluation, laboratory procedures): Verónica Marusa Brogonio-Cuadra, Norma Celia González-Huerta, Juan Francisco Ahumada-Pérez, Matvey Sosa-Arellano, Emma Xochitl Rojas-Toledo, Eugenio Morales-Hernández, Nonanzit Pérez-Hernández, and José Manuel Rodríguez-Pérez. Acceptance of the final manuscript version: All of the authors.

Funding

This work was financially supported by Grant no. 180720 of the Consejo Nacional de Ciencia y Tecnología (CONACyT- México).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics and Investigation Committee of the National Rehabilitation Institute “Luis Guillermo Ibarra Ibarra” and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Approval reference number 13/13 (04/25/2013).

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Lespasio MJ, Piuzzi NS, Husni ME et al (2017) Knee Osteoarthritis: A Primer. Perm J 21:16–183.  https://doi.org/10.7812/TPP/16-183 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    O’Neill TW, McCabe PS, McBeth J (2018) Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol 32:312–326.  https://doi.org/10.1016/j.berh.2018.10.007 CrossRefPubMedGoogle Scholar
  3. 3.
    Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707.  https://doi.org/10.1002/art.34453 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Martel-Pelletier J, Boileau C, Pelletier J-P, Roughley PJ (2008) Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 22:351–384.  https://doi.org/10.1016/j.berh.2008.02.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Michigami T (2014) Current understanding on the molecular basis of chondrogenesis. Clin Pediatr Endocrinol 23:1–8.  https://doi.org/10.1292/cpe.23.1 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhong L, Huang X, Karperien M, Post JN (2015) The regulatory role of signaling crosstalk in hypertrophy of MSCs and human articular chondrocytes. Int J Mol Sci 16:19225–19247.  https://doi.org/10.3390/ijms160819225 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Maldonado M, Nam J (2013) The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int 2013:284873.  https://doi.org/10.1155/2013/284873 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Robinson WH, Lepus CM, Wang Q et al (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:580–592.  https://doi.org/10.1038/nrrheum.2016.136 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Knapinska A, Fields GB (2012) Chemical biology for understanding matrix metalloproteinase function. ChemBioChem 13:2002–2020.  https://doi.org/10.1002/cbic.201200298 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Verma P, Dalal K (2011) ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J Cell Biochem 112:3507–3514.  https://doi.org/10.1002/jcb.23298 CrossRefPubMedGoogle Scholar
  11. 11.
    McGonagle D, Tan AL, Carey J, Benjamin M (2010) The anatomical basis for a novel classification of osteoarthritis and allied disorders. J Anat 216:279–291.  https://doi.org/10.1111/j.1469-7580.2009.01186.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jeffries MA (2019) Osteoarthritis year in review 2018: genetics and epigenetics. Osteoarthr Cartil 27:371–377.  https://doi.org/10.1016/j.joca.2018.10.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Fathollahi A, Aslani S, Jamshidi A, Mahmoudi M (2019) Epigenetics in osteoarthritis: novel spotlight. J Cell Physiol 234:12309–12324.  https://doi.org/10.1002/jcp.28020 CrossRefPubMedGoogle Scholar
  14. 14.
    Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926CrossRefGoogle Scholar
  15. 15.
    Lei H, Oh SP, Okano M et al (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195–3205PubMedGoogle Scholar
  16. 16.
    Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070.  https://doi.org/10.1126/science.1063852 CrossRefPubMedGoogle Scholar
  17. 17.
    Kanherkar RR, Bhatia-Dey N, Csoka AB (2014) Epigenetics across the human lifespan. Front Cell Dev Biol 2:49.  https://doi.org/10.3389/fcell.2014.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022.  https://doi.org/10.1101/gad.2037511 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Golbabapour S, Abdulla MA, Hajrezaei M (2011) A concise review on epigenetic regulation: insight into molecular mechanisms. Int J Mol Sci 12:8661–8694.  https://doi.org/10.3390/ijms12128661 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kullmann K, Deryal M, Ong MF et al (2013) DNMT1 genetic polymorphisms affect breast cancer risk in the central European Caucasian population. Clin Epigenet 5:7.  https://doi.org/10.1186/1868-7083-5-7 CrossRefGoogle Scholar
  21. 21.
    Mostowska A, Sajdak S, Pawlik P et al (2013) DNMT1, DNMT3A and DNMT3B gene variants in relation to ovarian cancer risk in the Polish population. Mol Biol Rep 40:4893–4899.  https://doi.org/10.1007/s11033-013-2589-0 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Park BL, Kim LH, Shin HD et al (2004) Association analyses of DNA methyltransferase-1 (DNMT1) polymorphisms with systemic lupus erythematosus. J Hum Genet 49:642–646.  https://doi.org/10.1007/s10038-004-0192-x CrossRefPubMedGoogle Scholar
  23. 23.
    Piotrowski P, Grobelna MK, Wudarski M et al (2015) Genetic variants of DNMT3A and systemic lupus erythematosus susceptibility. Mod Rheumatol 25:96–99.  https://doi.org/10.3109/14397595.2014.902296 CrossRefPubMedGoogle Scholar
  24. 24.
    Nam EJ, Kim KH, Han SW et al (2010) The -283C/T polymorphism of the DNMT3B gene influences the progression of joint destruction in rheumatoid arthritis. Rheumatol Int 30:1299–1303.  https://doi.org/10.1007/s00296-009-1141-y CrossRefPubMedGoogle Scholar
  25. 25.
    Fernández-Tajes J, Soto-Hermida A, Vázquez-Mosquera ME et al (2014) Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis 73:668–677.  https://doi.org/10.1136/annrheumdis-2012-202783 CrossRefPubMedGoogle Scholar
  26. 26.
    Jeffries MA, Donica M, Baker LW et al (2014) Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage. Arthritis Rheumatol 66:2804–2815.  https://doi.org/10.1002/art.38762 CrossRefPubMedGoogle Scholar
  27. 27.
    Roach HI, Yamada N, Cheung KSC et al (2005) Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum 52:3110–3124.  https://doi.org/10.1002/art.21300 CrossRefPubMedGoogle Scholar
  28. 28.
    Hashimoto K, Otero M, Imagawa K et al (2013) Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem 288:10061–10072.  https://doi.org/10.1074/jbc.M112.421156 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Altman R, Asch E, Bloch D et al (1986) Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 29:1039–1049CrossRefGoogle Scholar
  30. 30.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502.  https://doi.org/10.1136/ard.16.4.494 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fransen M, Agaliotis M, Bridgett L, Mackey MG (2011) Hip and knee pain: role of occupational factors. Best Pract Res Clin Rheumatol 25:81–101.  https://doi.org/10.1016/j.berh.2011.01.012 CrossRefPubMedGoogle Scholar
  32. 32.
    Richmond SA, Fukuchi RK, Ezzat A et al (2013) Are joint injury, sport activity, physical activity, obesity, or occupational activities predictors for osteoarthritis? A systematic review. J Orthop Sport Phys Ther 43:515–B19.  https://doi.org/10.2519/jospt.2013.4796 CrossRefGoogle Scholar
  33. 33.
    Zhong X, Peng Y, Yao C et al (2016) Association of DNA methyltransferase polymorphisms with susceptibility to primary gouty arthritis. Biomed Rep 5:467–472.  https://doi.org/10.3892/br.2016.746 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–57CrossRefGoogle Scholar
  35. 35.
    Shen J, Wang C, Li D et al (2017) DNA methyltransferase 3b regulates articular cartilage homeostasis by altering metabolism. JCI Insight.  https://doi.org/10.1172/jci.insight.93612 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xu T, Wang C, Shen J et al (2018) Ablation of Dnmt3b in chondrocytes suppresses cell maturation during embryonic development. J Cell Biochem 119:5852–5863.  https://doi.org/10.1002/jcb.26775 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Stock M, Menges S, Eitzinger N et al (2017) A dual role of upper zone of growth plate and cartilage matrix-associated protein in human and mouse osteoarthritic cartilage: inhibition of aggrecanases and promotion of bone turnover. Arthritis Rheumatol (Hobok) 69:1233–1245.  https://doi.org/10.1002/art.40042 CrossRefGoogle Scholar
  38. 38.
    Bramlage CP, Häupl T, Kaps C et al (2006) Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 8:R58.  https://doi.org/10.1186/ar1923 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Martel-Pelletier J, Di Battista JA, Lajeunesse D, Pelletier JP (1998) IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis. Inflamm Res 47:90–100.  https://doi.org/10.1007/s000110050288 CrossRefPubMedGoogle Scholar
  40. 40.
    Nakano K, Boyle DL, Firestein GS (2013) Regulation of DNA methylation in rheumatoid arthritis synoviocytes. J Immunol 190:1297–1303.  https://doi.org/10.4049/jimmunol.1202572 CrossRefPubMedGoogle Scholar
  41. 41.
    Peng H, Chen Y, Gong P et al (2016) Higher methylation intensity induced by EBV LMP1 via NF-κB/DNMT3b signaling contributes to silencing of PTEN gene. Oncotarget 7:40025–40037.  https://doi.org/10.18632/oncotarget.9474 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    El-Maarri O, Kareta MS, Mikeska T et al (2009) A systematic search for DNA methyltransferase polymorphisms reveals a rare DNMT3L variant associated with subtelomeric hypomethylation. Hum Mol Genet 18:1755–68.  https://doi.org/10.1093/hmg/ddp088 CrossRefPubMedGoogle Scholar
  43. 43.
    Yanagisawa Y, Ito E, Yuasa Y, Maruyama K (2002) The human DNA methyltransferases DNMT3A and DNMT3B have two types of promoters with different CpG contents. Biochim Biophys Acta 1577:457–65CrossRefGoogle Scholar
  44. 44.
    Lee SJ, Jeon H-S, Jang J-S et al (2004) DNMT3B polymorphisms and risk of primary lung cancer. Carcinogenesis 26:403–409.  https://doi.org/10.1093/carcin/bgh307 CrossRefPubMedGoogle Scholar
  45. 45.
    Thompson WD (1994) Statistical analysis of case–control studies. Epidemiol Rev 16:33–50.  https://doi.org/10.1093/oxfordjournals.epirev.a036143 CrossRefPubMedGoogle Scholar
  46. 46.
    Moreno-Estrada A, Gignoux CR, Fernández-López JC et al (2014) The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science 80(344):1280–1285.  https://doi.org/10.1126/science.1251688 CrossRefGoogle Scholar
  47. 47.
    Lasky T, Stolley PD (1994) Selection of cases and controls. Epidemiol Rev 16:6–17.  https://doi.org/10.1093/oxfordjournals.epirev.a036145 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de GenéticaInstituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”Mexico CityMexico
  2. 2.Servicio de RadiologíaInstituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”Mexico CityMexico
  3. 3.Departamento de Biología MolecularInstituto Nacional de Cardiología “Ignacio Chávez”Mexico CityMexico

Personalised recommendations