Advertisement

Rheumatology International

, Volume 39, Issue 10, pp 1681–1688 | Cite as

Gait as predictor of physical function in axial spondyloarthritis: the prospective longitudinal FOLOMI (Function, Locomotion, Measurement, Inflammation) study protocol

  • Julie SoulardEmail author
  • Nicolas Vuillerme
  • Philippe Gaudin
  • Laurent Grange
  • Athan Baillet
  • Jean-Luc Cracowski
  • Robert Juvin
  • Jacques Vaillant
Clinical Trials
  • 33 Downloads

Abstract

Axial spondyloarthritis (axSpA) is a chronic inflammatory rheumatic disease affecting predominantly sacroiliac joints and axial skeleton. axSpA progression being irregular and hardly predictable, identifying functional decline is particularly important in patient with axSpA to allow delivery of timely and targeted interventions. Pain, reduced range of motion or altered posture can have adverse consequences on gait. Although gait has previously been used as a sensitive measure of physical outcomes in elderly and pathological populations, to the best of our knowledge, no study has used gait as a predictor of physical function in patients with axSpA. The objective of our study is hence to determine if gait parameters measured in patients with axSpA could predict the evaluation at 18 months of physical function as assessed by the Bath Ankylosing Spondylitis Functional Index (BASFI). This is a prospective and longitudinal study. Sixty patients with axSpA and 30 healthy age- and sex-matched controls will be included. Patients should be aged 18–65 years at time of their first evaluation, followed at Grenoble Alpes University Hospital for axSpA or ankylosing spondylitis, able to walk 180 m without technical help and with stable treatment for at least 12 months. Clinical characteristics, BASFI, Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), clinical and laboratory measurements of gait will be assessed during four visits (at baseline and at months 6, 12, and 18). Similar assessments will be performed once for the healthy control group. A linear mixed model at 6, 12 and 18 months will be constructed to answer to the first objective, with the BASFI as dependent variable and gait parameters as explanatory variables. The data collection started in August 2018 and will be completed with the inclusion and follow-up of all the participants. We believe that the combination of clinical and laboratory measurements of gait in patients with axSpA could strengthen the capacity to monitor disease’s evolution and to predict changes in patients’ physical function. Results of the present study could ultimately allow delivering targeted, timely, personalized interventions and treatment in patients with axSpA.

Trial registration: The study was approved by local ethic committee (CPP Ile De France 1, RCB: 2017-A03468-45, date of agreement: July 17th, last version: V4.0, 2018, March 5th, 2019) and is retrospectively registered in Clinical trials (NCT03761212).

Keywords

Ankylosing spondylitis Axial spondyloarthritis Spondylarthritis Walking Wearable sensors 6-Minute Walk Test Timed Up and Go 10-Meter Walk Test Instrumented gait 

Abbreviations

10MWT

10-Meter Walk Test

AS

Ankylosing spondylitis

BASFI

Bath Ankylosing Spondylitis Functional Index

BASDAI

Bath Ankylosing Spondylitis Disease Activity Index

GPAQ

Global Physical Activity Questionnaire

iTUG

Instrumented Timed Up and Go

i6MWT

Instrumented 6-Minute Walk Test

IPAQ

International Physical Activity Questionnaire

SF-36

Short Form 36

Notes

Author contributions

All authors have contributed to the design of this project. JS and NV wrote the manuscript and all authors read and approved this manuscript.

Funding

This study is part of the Ph.D. thesis of the first author Julie Soulard (Univ. Grenoble Alpes, AGEIS, France and Grenoble Alps University Hospital, Grenoble, France). This work is supported by the French Ministry of Health and Solidarity with the “Nursing and Paramedical Hospital Research Program” year 2016 (PHRIP-16-0528) and by the French National Research Agency in the framework of the “Investissements d’avenir” program (ANR-10-AIRT-05 and ANR-15-IDEX-02). The sponsors had no involvement in the design of the study, the collection, analysis and interpretation of data, and in writing the manuscript. This work further forms part of a broader translational and interdisciplinary research program, GaitAlps.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no proprietary, financial, professional, or other competing interests regarding this study and the publication of this paper.

Ethics approval and consent to participate

The study was approved by local ethic committee (CPP IDF1, RCB: 2017-A03468-45, date of agreement: July 17th, last version: V4.0, 2018, March 5th, 2019). This study protocol is registered on ClinicalTrials.gov, with the following ID: NCT03761212 and follow the SPIRIT checklist. Written informed consent will be obtained from all participants by the physiotherapist or a medical doctor. Any modification to the initial protocol will be presented to the local ethics committee and has to be accepted before application and will be registered on ClinicalTrials.gov.

Data management

Data of the participants are anonymized with a participant number. A clinical research associate, mandated by the Grenoble Alpes University Hospital, will monitor the study depending on inclusion rhythm and following a pre-prepared plan. Each monitoring will be associated with a written record. Besides, an audit or an inspection by health authorities can be conducted, independently of the sponsor and promotor, at any time to ensure research quality, result validity, and law respect.

Trial status

The data collection started in August 2018 and will be completed with the inclusion and follow-up of all the participants (60 patients with axSpA and 30 healthy controls). We plan the results of this study to be presented at international oriented scientific and clinical conferences and to be published in peer-reviewed scientific journals.

Supplementary material

296_2019_4396_MOESM1_ESM.doc (122 kb)
Supplementary material 1 (DOC 121 kb)

References

  1. 1.
    Proft F, Poddubnyy D (2018) Ankylosing spondylitis and axial spondyloarthritis: recent insights and impact of new classification criteria. Ther Adv Musculoskelet Dis 10:129–139.  https://doi.org/10.1177/1759720X18773726 CrossRefGoogle Scholar
  2. 2.
    Raychaudhuri SP, Deodhar A (2014) The classification and diagnostic criteria of ankylosing spondylitis. J Autoimmun 48–49:128–133.  https://doi.org/10.1016/j.jaut.2014.01.015 CrossRefGoogle Scholar
  3. 3.
    Rudwaleit M, van der Heijde D, Landewé R et al (2011) The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis 70:25–31.  https://doi.org/10.1136/ard.2010.133645 CrossRefGoogle Scholar
  4. 4.
    Sieper J, Poddubnyy D (2017) Axial spondyloarthritis. Lancet Lond Engl 390:73–84.  https://doi.org/10.1016/S0140-6736(16)31591-4 CrossRefGoogle Scholar
  5. 5.
    Noureldin B, Barkham N (2018) The current standard of care and the unmet needs for axial spondyloarthritis. Rheumatol Oxf Engl 57:vi10–vi17.  https://doi.org/10.1093/rheumatology/key217 CrossRefGoogle Scholar
  6. 6.
    Kiltz U, Baraliakos X, Karakostas P et al (2012) Do patients with non-radiographic axial spondylarthritis differ from patients with ankylosing spondylitis? Arthritis Care Res 64:1415–1422.  https://doi.org/10.1002/acr.21688 CrossRefGoogle Scholar
  7. 7.
    Lockwood MM, Gensler LS (2017) Nonradiographic axial spondyloarthritis. Best Pract Res Clin Rheumatol 31:816–829.  https://doi.org/10.1016/j.berh.2018.08.008 CrossRefGoogle Scholar
  8. 8.
    Sieper J, Hu X, Black CM et al (2017) Systematic review of clinical, humanistic, and economic outcome comparisons between radiographic and non-radiographic axial spondyloarthritis. Semin Arthritis Rheum 46:746–753.  https://doi.org/10.1016/j.semarthrit.2016.09.002 CrossRefGoogle Scholar
  9. 9.
    Deodhar A, Strand V, Kay J, Braun J (2016) The term “non-radiographic axial spondyloarthritis” is much more important to classify than to diagnose patients with axial spondyloarthritis. Ann Rheum Dis 75:791–794.  https://doi.org/10.1136/annrheumdis-2015-208852 CrossRefGoogle Scholar
  10. 10.
    Akasbi N, Siar N, Zoukal S et al (2019) Comparison of non-radiographic axial spondyloarthritis and ankylosing spondylitis from a single rheumatology hospital in Morocco. Curr Rheumatol Rev.  https://doi.org/10.2174/1573397115666190222195923 Google Scholar
  11. 11.
    Sieper J, Rudwaleit M, Baraliakos X et al (2009) The Assessment of SpondyloArthritis International Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 68(Suppl 2):ii1–ii44.  https://doi.org/10.1136/ard.2008.104018 CrossRefGoogle Scholar
  12. 12.
    Imkamp M, Lima Passos V, Boonen A et al (2018) Uncovering the heterogeneity of disease impact in axial spondyloarthritis: bivariate trajectories of disease activity and quality of life. RMD Open 4:e000755.  https://doi.org/10.1136/rmdopen-2018-000755 CrossRefGoogle Scholar
  13. 13.
    Packham J (2018) Optimizing outcomes for ankylosing spondylitis and axial spondyloarthritis patients: a holistic approach to care. Rheumatol Oxf Engl 57:vi29–vi34.  https://doi.org/10.1093/rheumatology/key200 CrossRefGoogle Scholar
  14. 14.
    Stone MA, Pomeroy E, Keat A et al (2008) Assessment of the impact of flares in ankylosing spondylitis disease activity using the Flare Illustration. Rheumatol Oxf Engl 47:1213–1218.  https://doi.org/10.1093/rheumatology/ken176 CrossRefGoogle Scholar
  15. 15.
    Poddubnyy D, Haibel H, Listing J et al (2012) Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondylarthritis. Arthritis Rheum 64:1388–1398.  https://doi.org/10.1002/art.33465 CrossRefGoogle Scholar
  16. 16.
    Bennett AN, McGonagle D, O’Connor P et al (2008) Severity of baseline magnetic resonance imaging-evident sacroiliitis and HLA-B27 status in early inflammatory back pain predict radiographically evident ankylosing spondylitis at eight years. Arthritis Rheum 58:3413–3418.  https://doi.org/10.1002/art.24024 CrossRefGoogle Scholar
  17. 17.
    Oostveen J, Prevo R, den Boer J, van de Laar M (1999) Early detection of sacroiliitis on magnetic resonance imaging and subsequent development of sacroiliitis on plain radiography. A prospective, longitudinal study. J Rheumatol 26:1953–1958Google Scholar
  18. 18.
    Rudwaleit M, Haibel H, Baraliakos X et al (2009) The early disease stage in axial spondylarthritis: results from the German Spondyloarthritis Inception Cohort. Arthritis Rheum 60:717–727.  https://doi.org/10.1002/art.24483 CrossRefGoogle Scholar
  19. 19.
    Poddubnyy D, Rudwaleit M, Haibel H et al (2011) Rates and predictors of radiographic sacroiliitis progression over 2 years in patients with axial spondyloarthritis. Ann Rheum Dis 70:1369–1374.  https://doi.org/10.1136/ard.2010.145995 CrossRefGoogle Scholar
  20. 20.
    Rudwaleit M, Sieper J (2012) Referral strategies for early diagnosis of axial spondyloarthritis. Nat Rev Rheumatol 8:262–268.  https://doi.org/10.1038/nrrheum.2012.39 CrossRefGoogle Scholar
  21. 21.
    Garg N, van den Bosch F, Deodhar A (2014) The concept of spondyloarthritis: where are we now? Best Pract Res Clin Rheumatol 28:663–672.  https://doi.org/10.1016/j.berh.2014.10.007 CrossRefGoogle Scholar
  22. 22.
    Zochling J (2011) Measures of symptoms and disease status in ankylosing spondylitis: ankylosing Spondylitis Disease Activity Score (ASDAS), Ankylosing Spondylitis Quality of Life Scale (ASQoL), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Global Score (BAS-G), Bath Ankylosing Spondylitis Metrology Index (BASMI), Dougados Functional Index (DFI), and Health Assessment Questionnaire for the Spondylarthropathies (HAQ-S). Arthritis Care Res Hoboken 63(Suppl 11):S47–S58.  https://doi.org/10.1002/acr.20575 CrossRefGoogle Scholar
  23. 23.
    Boonen A, Sieper J, van der Heijde D et al (2015) The burden of non-radiographic axial spondyloarthritis. Semin Arthritis Rheum 44:556–562.  https://doi.org/10.1016/j.semarthrit.2014.10.009 CrossRefGoogle Scholar
  24. 24.
    Ward MM (2002) Predictors of the progression of functional disability in patients with ankylosing spondylitis. J Rheumatol 29:1420–1425Google Scholar
  25. 25.
    de Hooge M, Ramonda R, Lorenzin M et al (2016) Work productivity is associated with disease activity and functional ability in Italian patients with early axial spondyloarthritis: an observational study from the SPACE cohort. Arthritis Res Ther 18:265.  https://doi.org/10.1186/s13075-016-1162-3 CrossRefGoogle Scholar
  26. 26.
    López-Medina C, Garrido-Castro JL, Castro-Jiménez J et al (2018) Evaluation of quality of life in patients with axial spondyloarthritis and its association with disease activity, functionality, mobility, and structural damage. Clin Rheumatol 37:1581–1588.  https://doi.org/10.1007/s10067-018-4112-4 CrossRefGoogle Scholar
  27. 27.
    Zhao S, Thong D, Miller N et al (2018) The prevalence of depression in axial spondyloarthritis and its association with disease activity: a systematic review and meta-analysis. Arthritis Res Ther 20:140.  https://doi.org/10.1186/s13075-018-1644-6 CrossRefGoogle Scholar
  28. 28.
    Ward MM (2002) Functional disability predicts total costs in patients with ankylosing spondylitis. Arthritis Rheum 46:223–231.  https://doi.org/10.1002/1529-0131(200201)46:1%3c223:AID-ART498%3e3.0.CO;2-%23 CrossRefGoogle Scholar
  29. 29.
    Robertson LP, Davis MJ (2004) A longitudinal study of disease activity and functional status in a hospital cohort of patients with ankylosing spondylitis. Rheumatol Oxf Engl 43:1565–1568.  https://doi.org/10.1093/rheumatology/keh386 CrossRefGoogle Scholar
  30. 30.
    Carroll M, Parmar P, Dalbeth N et al (2015) Gait characteristics associated with the foot and ankle in inflammatory arthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord 16:134.  https://doi.org/10.1186/s12891-015-0596-0 CrossRefGoogle Scholar
  31. 31.
    Del Din S, Carraro E, Sawacha Z et al (2011) Impaired gait in ankylosing spondylitis. Med Biol Eng Comput 49:801–809.  https://doi.org/10.1007/s11517-010-0731-x CrossRefGoogle Scholar
  32. 32.
    Mangone M, Scettri P, Paoloni M et al (2011) Pelvis-shoulder coordination during level walking in patients with ankylosing spondylitis. Gait Posture 34:1–5.  https://doi.org/10.1016/j.gaitpost.2011.02.002 CrossRefGoogle Scholar
  33. 33.
    Zebouni L, Helliwell PS, Howe A, Wright V (1992) Gait analysis in ankylosing spondylitis. Ann Rheum Dis 51:898–899CrossRefGoogle Scholar
  34. 34.
    Soulard J, Vuillerme N, Vaillant J (2019) Gait characteristics in patients with ankylosing spondylitis: protocol for a systematic review. JMIR Res Protoc 8:e12470.  https://doi.org/10.2196/12470 CrossRefGoogle Scholar
  35. 35.
    Eppeland SG, Diamantopoulos AP, Soldal DM, Haugeberg G (2013) Short term in-patient rehabilitation in axial spondyloarthritis—the results of a 2-week program performed in daily clinical practice. BMC Res Notes 6:185.  https://doi.org/10.1186/1756-0500-6-185 CrossRefGoogle Scholar
  36. 36.
    Montero-Odasso M, Schapira M, Soriano ER et al (2005) Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J Gerontol A Biol Sci Med Sci 60:1304–1309CrossRefGoogle Scholar
  37. 37.
    Cesari M, Kritchevsky SB, Penninx BWHJ et al (2005) Prognostic value of usual gait speed in well-functioning older people—results from the Health, Aging and Body Composition Study. J Am Geriatr Soc 53:1675–1680.  https://doi.org/10.1111/j.1532-5415.2005.53501.x CrossRefGoogle Scholar
  38. 38.
    Abellan van Kan G, Rolland Y, Andrieu S et al (2009) Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health Aging 13:881–889CrossRefGoogle Scholar
  39. 39.
    Calin A, Garrett S, Whitelock H et al (1994) A new approach to defining functional ability in ankylosing spondylitis: the development of the Bath Ankylosing Spondylitis Functional Index. J Rheumatol 21:2281–2285Google Scholar
  40. 40.
    Calin A, Nakache JP, Gueguen A et al (1999) Defining disease activity in ankylosing spondylitis: is a combination of variables (Bath Ankylosing Spondylitis Disease Activity Index) an appropriate instrument? Rheumatol Oxf Engl 38:878–882CrossRefGoogle Scholar
  41. 41.
    Garrett S, Jenkinson T, Kennedy LG et al (1994) A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol 21:2286–2291Google Scholar
  42. 42.
    Boonstra AM, Schiphorst Preuper HR, Reneman MF et al (2008) Reliability and validity of the visual analogue scale for disability in patients with chronic musculoskeletal pain. Int J Rehabil Res Int Z Rehabil Rev Int Rech Readapt 31:165–169.  https://doi.org/10.1097/MRR.0b013e3282fc0f93 Google Scholar
  43. 43.
    Escalante A, Lichtenstein MJ, White K et al (1995) A method for scoring the pain map of the McGill Pain Questionnaire for use in epidemiologic studies. Aging Milan Italy 7:358–366Google Scholar
  44. 44.
    van Trijffel E, van de Pol RJ, Oostendorp RA, Lucas C (2010) Inter-rater reliability for measurement of passive physiological movements in lower extremity joints is generally low: a systematic review. J Physiother 56:223–235CrossRefGoogle Scholar
  45. 45.
    Berthelot J-M, Laslett M (2009) Par quels signes cliniques s’assurer au mieux qu’une douleur est bien d’origine sacro-iliaque (sensu lato)? Rev Rhum 76:741–749CrossRefGoogle Scholar
  46. 46.
    Williams R, Binkley J, Bloch R et al (1993) Reliability of the modified-modified Schöber and double inclinometer methods for measuring lumbar flexion and extension. Phys Ther 73:33–44Google Scholar
  47. 47.
    Poulin V, Desrosiers J (2010) Validation of the French translation of the Impact on Participation and Autonomy Questionnaire (IPAQ). Can J Occup Ther Rev Can Ergother 77:159–166.  https://doi.org/10.2182/cjot.2010.77.3.5 CrossRefGoogle Scholar
  48. 48.
    Perneger TV, Leplège A, Etter JF, Rougemont A (1995) Validation of a French-language version of the MOS 36-Item Short Form Health Survey (SF-36) in young healthy adults. J Clin Epidemiol 48:1051–1060CrossRefGoogle Scholar
  49. 49.
    Kaminska M, Jobin V, Mayer P et al (2010) The Epworth Sleepiness Scale: self-administration versus administration by the physician, and validation of a French version. Can Respir J J Can Thorac Soc 17:e27–e34Google Scholar
  50. 50.
    Pichot P, Brun JP (1984) Brief self-evaluation questionnaire for depressive, asthenic and anxious dimensions. Ann Med Psychol (Paris) 142:862–865Google Scholar
  51. 51.
    Pourtier-Piotte C, Pereira B, Soubrier M et al (2015) French validation of the Foot Function Index (FFI). Ann Phys Rehabil Med 58:276–282.  https://doi.org/10.1016/j.rehab.2015.07.003 CrossRefGoogle Scholar
  52. 52.
    Koca TT, Göğebakan H, Koçyiğit BF et al (2019) Foot functions in ankylosing spondylitis. Clin Rheumatol 38:1083–1088.  https://doi.org/10.1007/s10067-018-4386-6 CrossRefGoogle Scholar
  53. 53.
    Wood D, Mould M, Ong S, Baker E (2005) “Pack year” smoking histories: what about patients who use loose tobacco? Tob Control 14:141–142.  https://doi.org/10.1136/tc.2004.009977 CrossRefGoogle Scholar
  54. 54.
    Rivière F, Widad FZ, Speyer E et al (2018) Reliability and validity of the French version of the Global Physical Activity Questionnaire. J Sport Health Sci 7:339–345.  https://doi.org/10.1016/j.jshs.2016.08.004 CrossRefGoogle Scholar
  55. 55.
    Reilly MC, Gooch KL, Wong RL et al (2010) Validity, reliability and responsiveness of the Work Productivity and Activity Impairment Questionnaire in ankylosing spondylitis. Rheumatol Oxf Engl 49:812–819.  https://doi.org/10.1093/rheumatology/kep457 CrossRefGoogle Scholar
  56. 56.
    Reveille JD (2015) Biomarkers for diagnosis, monitoring of progression, and treatment responses in ankylosing spondylitis and axial spondyloarthritis. Clin Rheumatol 34:1009–1018.  https://doi.org/10.1007/s10067-015-2949-3 CrossRefGoogle Scholar
  57. 57.
    Graham JE, Ostir GV, Fisher SR, Ottenbacher KJ (2008) Assessing walking speed in clinical research: a systematic review. J Eval Clin Pract 14:552–562.  https://doi.org/10.1111/j.1365-2753.2007.00917.x CrossRefGoogle Scholar
  58. 58.
    Beauchet O, Allali G, Sekhon H et al (2017) Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: the biomathics and Canadian Gait Consortiums Initiative. Front Hum Neurosci 11:353.  https://doi.org/10.3389/fnhum.2017.00353 CrossRefGoogle Scholar
  59. 59.
    Yang L, He C, Pang MYC (2016) Reliability and validity of dual-task mobility assessments in people with chronic stroke. PLoS One 11:e0147833.  https://doi.org/10.1371/journal.pone.0147833 CrossRefGoogle Scholar
  60. 60.
    Vervoort D, Vuillerme N, Kosse N et al (2016) Multivariate analyses and classification of inertial sensor data to identify aging effects on the Timed-Up-and-Go Test. PLoS One 11:e0155984.  https://doi.org/10.1371/journal.pone.0155984 CrossRefGoogle Scholar
  61. 61.
    Bloch ML, Jønsson LR, Kristensen MT (2017) Introducing a third Timed Up and Go Test trial improves performances of hospitalized and community-dwelling older individuals. J Geriatr Phys Ther 40:121–126.  https://doi.org/10.1519/JPT.0000000000000080 CrossRefGoogle Scholar
  62. 62.
    Bonnyaud C, Roche N, Van Hamme A et al (2016) Locomotor trajectories of stroke patients during oriented gait and turning. PLoS One 11:e0149757.  https://doi.org/10.1371/journal.pone.0149757 CrossRefGoogle Scholar
  63. 63.
    ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (2002) ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166:111–117.  https://doi.org/10.1164/ajrccm.166.1.at1102 CrossRefGoogle Scholar
  64. 64.
    Aydog E, Depedibi R, Bal A et al (2006) Dynamic postural balance in ankylosing spondylitis patients. Rheumatol Oxf Engl 45:445–448.  https://doi.org/10.1093/rheumatology/kei192 CrossRefGoogle Scholar
  65. 65.
    Bot SD, Caspers M, Van Royen BJ et al (1999) Biomechanical analysis of posture in patients with spinal kyphosis due to ankylosing spondylitis: a pilot study. Rheumatol Oxf Engl 38:441–443.  https://doi.org/10.1093/rheumatology/38.5.441 CrossRefGoogle Scholar
  66. 66.
    Brambila-Tapia AJL, Rocha-Muñoz AD, Gonzalez-Lopez L et al (2013) Pulmonary function in ankylosing spondylitis: association with clinical variables. Rheumatol Int 33:2351–2358.  https://doi.org/10.1007/s00296-013-2723-2 CrossRefGoogle Scholar
  67. 67.
    Çınar E, Akkoç Y, Karapolat H et al (2016) Postural deformities: potential morbidities to cause balance problems in patients with ankylosing spondylitis? Eur J Rheumatol 3:5–9.  https://doi.org/10.5152/eurjrheum.2015.15104 CrossRefGoogle Scholar
  68. 68.
    Halvorsen S, Vøllestad NK, Fongen C et al (2012) Physical fitness in patients with ankylosing spondylitis: comparison with population controls. Phys Ther 92:298–309.  https://doi.org/10.2522/ptj.20110137 CrossRefGoogle Scholar
  69. 69.
    Iosa M, Picerno P, Paolucci S, Morone G (2016) Wearable inertial sensors for human movement analysis. Expert Rev Med Devices 13:641–659.  https://doi.org/10.1080/17434440.2016.1198694 CrossRefGoogle Scholar
  70. 70.
    Lord S, Galna B, Verghese J et al (2013) Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. J Gerontol A Biol Sci Med Sci 68:820–827.  https://doi.org/10.1093/gerona/gls255 CrossRefGoogle Scholar
  71. 71.
    Petraglia F, Scarcella L, Pedrazzi G et al (2019) Inertial sensors versus standard systems in gait analysis: a systematic review and meta-analysis. Eur J Phys Rehabil Med 55:265–280.  https://doi.org/10.23736/S1973-9087.18.05306-6 CrossRefGoogle Scholar
  72. 72.
    Doran MF, Brophy S, MacKay K et al (2003) Predictors of longterm outcome in ankylosing spondylitis. J Rheumatol 30:316–320Google Scholar
  73. 73.
    Sharan D, Rajkumar JS (2017) Physiotherapy for ankylosing spondylitis: systematic review and a proposed rehabilitation protocol. Curr Rheumatol Rev 13:121–125.  https://doi.org/10.2174/1573397112666161025112750 CrossRefGoogle Scholar
  74. 74.
    Verhoeven F, Guillot X, Prati C et al (2019) Aerobic exercise for axial spondyloarthritis—its effects on disease activity and function as compared to standard physiotherapy: a systematic review and meta-analysis. Int J Rheum Dis 22:234–241.  https://doi.org/10.1111/1756-185X.13385 CrossRefGoogle Scholar
  75. 75.
    Martins NA, Furtado GE, Campos MJ et al (2014) Exercise and ankylosing spondylitis with New York modified criteria: a systematic review of controlled trials with meta-analysis. Acta Reumatol Port 39:298–308Google Scholar
  76. 76.
    Haroon N, Inman RD, Learch TJ et al (2013) The Impact of TNF-inhibitors on radiographic progression in Ankylosing Spondylitis. Arthritis Rheum 65:2645–2654.  https://doi.org/10.1002/art.38070 Google Scholar
  77. 77.
    Jethwa H, Bowness P (2016) The interleukin (IL)-23/IL-17 axis in ankylosing spondylitis: new advances and potentials for treatment. Clin Exp Immunol 183:30–36.  https://doi.org/10.1111/cei.12670 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, AGEISGrenobleFrance
  2. 2.Neurology DepartmentGrenoble Alpes University HospitalGrenobleFrance
  3. 3.Institut Universitaire de FranceParisFrance
  4. 4.Rheumatology DepartmentGrenoble Alpes University HospitalGrenobleFrance
  5. 5.Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAGGrenobleFrance
  6. 6.Clinical Pharmacology DepartmentGrenoble Alpes University HospitalGrenobleFrance
  7. 7.Univ. Grenoble Alpes HP2 LaboratoryGrenobleFrance

Personalised recommendations